概述

平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数。让我们先来看这段代码:

 float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F; x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
}

2010年,John Carmack公开了Quake III Arena的源代码,这段代码便出自其中,这种算法在游戏《雷神之锤III竞技场》(Quake III Arena)被广泛应用,作为《雷神之锤》3D游戏引擎的作者,该算法理所应当的被认为该是Carmark所创,但是后来Carmack在对Beyond3D上关于该段代码的作者的讨论回信表示这段代码并不是出自他之手,也许是其开发小组的另一位成员所写,而至今该算法的最终起源仍然是个谜。

魔数0x5f3759df

此算法最为牛叉之处在于注释了what the fuck?的那一行代码,此处将浮点数作为整数右移一位,通过一个神秘的十六进制数0x5f3759df进行减法运算,便完成了牛顿迭代需要的第一次猜测值,而这次猜测值已经很接近满足精度的结果了,因此只通过了一次牛顿迭代就完成了所需精度的结果,其实就相当于直接进行计算就得到了所需结果。

32位浮点数在计算机中的存储方式

如果要理解该段代码除了魔数一行的代码,就必须理解浮点数在计算机中的存储方式。任何数据在计算机内存中都是以二进制形式存在的,浮点数也不例外, 32位的浮点数在计算机中的存储方式如下图,分为三个部分:

  1. 标志位(Sign),第31位为标志位,1代表负数,0代表正数;
  2. 指数部分(Exponent),指数部分共占8位,而 float类型规定其偏移量为127,由于指数可正可负,对于8位二进制数其表示范围为[-128, 127];
  3. 尾数部分(Mantissa),表示有效数字位,由于尾数部分的整数部分恒为1,该位将不被存储,因此原本23位的尾数部分可以表示的精度就变成了24位;

因此在二进制科学计数法中,我们可以将任意的32位浮点数表示为:

而平方根倒数速算法中的第9行的目的就是将浮点数转化为32位整型数的表现形式。

牛顿迭代法

牛顿迭代法又称为牛顿-拉菲森法(Newton-Raphson method),这种算法的原理就是一个求近似解的方法,该算法正是采用该方法来迭代平方根倒数的。

要求F(x)=0的解,首先选取一个接近函数F(x)零点的点(x0, F(x0)),过该点做切线求得其与X轴交点的x的值记为x1,该值通常会比x0更接近方程的解,然后不断使用新的点进行迭代至满足的精度为止。

在(x0, F(x0))点的斜率为,过该点的切线方程为,因此求得该切线与x轴的交点横坐标值,因此简化后的迭代公式为:

以求该平方根倒数求值为例,通过该方法转化为求方程的解,申明,根据牛顿法,第一次迭代结果为:

而这也正好是算法中的第12行代码对该算法的应用。

Lomont的逆向数学推理

对于该算法最让人难以理解的就是魔数0x5f3759df,对于这个问题,Purdue大学的数学家Chris Lomont在论坛上得知后觉得非常有趣,于是决定研究一下它的工作原理。

Lomont在假设该算法成立的前提下(事实上已被广泛证实该算法的正确性),希望通过数学推理推导出该值。下面简要介绍一下Lomont的推导过程:

由于是求平方根倒数,因此假设所有浮点数的标志位均为0,浮点数二进制科学计数公式简化为:

我们假设所求的魔数为R,那么第一次猜测值就可以表示为,其中i表示浮点数x的整数形式,R为整型,如下图:

在对i进行按位右移的过程中,因为i的二进制指数位可能会被右移到尾数部分,所以必须按两种情况分类讨论:

1. 当i的指数部分为偶数,那么指数部分的最低位为0,指数位将不会被右移到尾数部分中,而真正的指数e = E - 127就是奇数,令e = 2d + 1,那么在经过运算后,y0的指数部分的值为:

由于我们所求的平方根倒数大于0,所以新的指数部分也必须大于0,且E的取值在[0, 254]之间,所以R1 ≥ 128;因为E是偶数,所以指数位并没有移动到尾数中,所以运算之后尾数y0的尾数部分为:

如果,那么初始猜测值为:

如果,二进制减法正如十进制中的减法运算,需向指数部分借位,此时,

定义

那么

因为e = 2d + 1,那么我们要求解的平方根倒数的近似值为:

所以y和y0的相对误差则为:

那么根据要求相对误差需小于0.125,则可以推导出R2的取值范围(189.2, 190.7),所以R2=190=0xbe;

2. 当i的指数部分为奇数时,同理推导出:

如果我们希望以上两种情况的相对误差均小于0.125, R1确定且与E的奇偶无关,那么R1=190=0xbe,此时重新定义以上两个误差函数:

最终通过当M=0,1,以及R2=M/2的几个临界点获取相对误差最大值函数,然后在所有函数中获取使得这些误差函数值都最小的R2的值,这个值便是我们要找的结果,分类讨论一共得到了9个关于R2(取值范围是[0, 1))的函数:

最终这个求值过程交给Mathematica来完成,也不知为何我最后求得的结果和Lomont略有差异:

r0 = 0.432744889959443195468521587014

我求出的结果:

r0 = 0.432744834277619894180588744347

其他讨论

Lomont求解魔数0x5f3759df的推导过程的前提是假设算法中

i  = 0x5f3759df - ( i >>  );

这行代码成立,通过反推来求解魔数的,但是这行代码最初是如何得出的,依据是什么,Lomont并没有给出更多的解释或猜测,好在其他的论坛也有相关的讨论。

在一则slashdot.org关于Origin of Quake3's Fast InvSqrt()的讨论中,kent.dickey的回复令人印象深刻,而我个人也非常赞同他的思路,非常简单的推导,也许他的这种思路才是该算法的最初雏形。

他在回复中说:对于浮点数平方根倒数的求解,指数部分的初始猜测值就是对指数部分减求反(暂时忽略尾数部分,因为对于2以内的求解,一步就可以得到结果),比如求16的平方根倒数:

但是由于在内存中浮点数特殊的存储方式,因此在内存中指数的整型值为:

NewExpIntValueInMemory=(ActualExp+127) << 23

我们想要的指数结果是:

NewActualExp=-ActualExp/2

由于在内存中:Exp=ActualExp+127,那么ActualExp=Exp-127,所以:

NewExp-127=-(Exp-127)/2

那么:

NewExp=127-(Exp-127)/2=(127×3)/2-Exp/2

那 么指数在内存中指数的整型值为:

所以在完全忽略尾数部分的前提下,初始猜测近似值为:

i=0x5F400000-i≫1

随后kent.dickey试图使用类似方法找到对于尾数部分的类似特定模式,遗憾的是没能找到,也许作者当初在有了这个思路(如果该思路真的就是原算法的雏形)之后,也采用了类似Lomont的暴力求解来获得更精确的初始猜测。

参考文献

速算1/Sqrt(x)背后的数学原理的更多相关文章

  1. GAN背后的数学原理

      模拟上帝之手的对抗博弈——GAN背后的数学原理 简介 深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度.从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式 ...

  2. opencv——PCA(主要成分分析)数学原理推导

    引言: 最近一直在学习主成分分析(PCA),所以想把最近学的一点知识整理一下,如果有不对的还请大家帮忙指正,共同学习. 首先我们知道当数据维度太大时,我们通常需要进行降维处理,降维处理的方式有很多种, ...

  3. hdu 1427 速算24点

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1427 速算24点 Description 速算24点相信绝大多数人都玩过.就是随机给你四张牌,包括A( ...

  4. 24点游戏&&速算24点(dfs)

    24点游戏 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Sta ...

  5. hdu1427之速算24点

    速算24点 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  6. 【经验分享(续篇)】Trachtenberg system(特拉亨伯格速算系统)

    之前有篇文章简单地介绍了Trachtenberg系统的乘法计算方法,地址在这里.针对一些特定的数字,Trachtenberg还发展出了更快的计算方法. 先来介绍乘数为11的速算方法.它的计算规则我们可 ...

  7. 【经验分享】Trachtenberg system(特拉亨伯格速算系统)

    二战期间,俄国的数学家Jakow Trachtenberg(1888-1953)被关进纳粹集中营,在狱中,他开发出了一套心算算法,这套算法后来被命名为Trachtenberg(特拉亨伯格)速算系统. ...

  8. Trachtenberg(特拉亨伯格)速算系统

    二战期间,俄国的数学家Jakow Trachtenberg(1888-1953)被关进纳粹集中营,在狱中,他开发出了一套心算算法,这套算法后来被命名为Trachtenberg(特拉亨伯格)速算系统. ...

  9. 史丰收速算|2014年蓝桥杯B组题解析第四题-fishers

    史丰收速算 史丰收速算法的革命性贡献是:从高位算起,预测进位.不需要九九表,彻底颠覆了传统手算! 速算的核心基础是:1位数乘以多位数的乘法. 其中,乘以7是最复杂的,就以它为例. 因为,1/7 是个循 ...

随机推荐

  1. Java 征途:行者的地图

    前段时间应因缘梳理了下自己的 Java 知识体系, 成文一篇望能帮到即将走进或正在 Java 世界跋涉的程序员们. 第一张,基础图 大约在 2003 年我开始知道 Java 的(当时还在用 Delph ...

  2. Linux 常用命令(持续补充)

    常用命令: command &:将进程放在后台执行 ctrl + z:暂停当前进程 并放入后台 jobs:查看当前后台任务 bg( %id):将任务转为后台执行 fg( %id):将任务调回前 ...

  3. 前端性能优化的另一种方式——HTTP2.0

    最近在读一本书叫<web性能权威指南>谷歌公司高性能团队核心成员的权威之作. 一直听说HTTP2.0,对此也仅仅是耳闻,没有具体研读过,这次正好有两个篇章,分别讲HTTP1.1和HTTP2 ...

  4. .NET中AOP方便之神SheepAspect

    SheepAspect 简介以及代码示列: SheepAspect是一个AOP框架为.NET平台,深受AspectJ.它静织目标组件作为一个编译后的任务(编译时把AOP代码植入). 多有特性时,可根据 ...

  5. Asp.Net Core + Dapper + Repository 模式 + TDD 学习笔记

    0x00 前言 之前一直使用的是 EF ,做了一个简单的小项目后发现 EF 的表现并不是很好,就比如联表查询,因为现在的 EF Core 也没有啥好用的分析工具,所以也不知道该怎么写 Linq 生成出 ...

  6. StatePattern(状态模式)

    /** * 状态模式 * @author TMAC-J * 状态模式和策略模式很像,其实仔细研究发现完全不一样 * 策略模式各策略之间没有任何关系,独立的 * 状态模式各状态之间接口方法都是一样的 * ...

  7. maven 快照

    大型应用软件一般由多个模块组成,一般它是多个团队开发同一个应用程序的不同模块,这是比较常见的场景.例如,一个团队正在对应用程序的应用程序,用户界面项目(app-ui.jar:1.0) 的前端进行开发, ...

  8. TFS2013 设置签出独占锁

    转载自: http://www.cnblogs.com/zhang888/p/4280251.html

  9. Oracle 10g安装教程

    首先下载安装文件,打开后文件结构如图所示: 安装之前请关闭Windows防火墙并断开网络. xp系统下直接双击运行(本经验以XP系统安装为例进行讲述). 如果是在win7上安装,如图:在setup文件 ...

  10. T-SQL 拆分使用指定分隔符的字符串(split string)

    比如有一个表,我们需要些一个语句像SELECT OtherID, SplitData WHERE SomeID = 'abcdef-.......' , 然后就能返回分割成单独的行. 原表: | So ...