Spark Streaming中向flume拉取数据
在这里看到的解决方法
https://issues.apache.org/jira/browse/SPARK-1729
请是个人理解,有问题请大家留言。
其实本身flume是不支持像KAFKA一样的发布/订阅功能的,也就是说无法让spark去flume拉取数据,所以老外就想了个取巧的办法。
在flume中其实sinks是向channel主动拿数据的,那么就让就自定义sinks进行自监听,然后使sparkstreaming先和sinks连接在一起, 让streaming来决定是否拿数据及拿数据的频率, 那么这不就是实现了由streaming来向flume拿数据的需求了嘛?
你看,真是聪明人的作法,但我觉得吧,如果真的有发布/订阅的需求,其实还是上KAFKA吧…
最后,现在来说一下应该怎么去使用
首先,需要将以下代码编译成jar包,然后在flume中使用,代码转自这里 (如果发现需要依赖的工具类神马的,请在相同目录下的scala文件中找一找)
package org.apache.spark.streaming.flume.sink import java.net.InetSocketAddress
import java.util.concurrent._ import org.apache.avro.ipc.NettyServer
import org.apache.avro.ipc.specific.SpecificResponder
import org.apache.flume.Context
import org.apache.flume.Sink.Status
import org.apache.flume.conf.{Configurable, ConfigurationException}
import org.apache.flume.sink.AbstractSink /**
* A sink that uses Avro RPC to run a server that can be polled by Spark's
* FlumePollingInputDStream. This sink has the following configuration parameters:
*
* hostname - The hostname to bind to. Default: 0.0.0.0
* port - The port to bind to. (No default - mandatory)
* timeout - Time in seconds after which a transaction is rolled back,
* if an ACK is not received from Spark within that time
* threads - Number of threads to use to receive requests from Spark (Default: 10)
*
* This sink is unlike other Flume sinks in the sense that it does not push data,
* instead the process method in this sink simply blocks the SinkRunner the first time it is
* called. This sink starts up an Avro IPC server that uses the SparkFlumeProtocol.
*
* Each time a getEventBatch call comes, creates a transaction and reads events
* from the channel. When enough events are read, the events are sent to the Spark receiver and
* the thread itself is blocked and a reference to it saved off.
*
* When the ack for that batch is received,
* the thread which created the transaction is is retrieved and it commits the transaction with the
* channel from the same thread it was originally created in (since Flume transactions are
* thread local). If a nack is received instead, the sink rolls back the transaction. If no ack
* is received within the specified timeout, the transaction is rolled back too. If an ack comes
* after that, it is simply ignored and the events get re-sent.
*
*/ class SparkSink extends AbstractSink with Logging with Configurable { // Size of the pool to use for holding transaction processors.
private var poolSize: Integer = SparkSinkConfig.DEFAULT_THREADS // Timeout for each transaction. If spark does not respond in this much time,
// rollback the transaction
private var transactionTimeout = SparkSinkConfig.DEFAULT_TRANSACTION_TIMEOUT // Address info to bind on
private var hostname: String = SparkSinkConfig.DEFAULT_HOSTNAME
private var port: Int = 0 private var backOffInterval: Int = 200 // Handle to the server
private var serverOpt: Option[NettyServer] = None // The handler that handles the callback from Avro
private var handler: Option[SparkAvroCallbackHandler] = None // Latch that blocks off the Flume framework from wasting 1 thread.
private val blockingLatch = new CountDownLatch(1) override def start() {
logInfo("Starting Spark Sink: " + getName + " on port: " + port + " and interface: " +
hostname + " with " + "pool size: " + poolSize + " and transaction timeout: " +
transactionTimeout + ".")
handler = Option(new SparkAvroCallbackHandler(poolSize, getChannel, transactionTimeout,
backOffInterval))
val responder = new SpecificResponder(classOf[SparkFlumeProtocol], handler.get)
// Using the constructor that takes specific thread-pools requires bringing in netty
// dependencies which are being excluded in the build. In practice,
// Netty dependencies are already available on the JVM as Flume would have pulled them in.
serverOpt = Option(new NettyServer(responder, new InetSocketAddress(hostname, port)))
serverOpt.foreach(server => {
logInfo("Starting Avro server for sink: " + getName)
server.start()
})
super.start()
} override def stop() {
logInfo("Stopping Spark Sink: " + getName)
handler.foreach(callbackHandler => {
callbackHandler.shutdown()
})
serverOpt.foreach(server => {
logInfo("Stopping Avro Server for sink: " + getName)
server.close()
server.join()
})
blockingLatch.countDown()
super.stop()
} override def configure(ctx: Context) {
import SparkSinkConfig._
hostname = ctx.getString(CONF_HOSTNAME, DEFAULT_HOSTNAME)
port = Option(ctx.getInteger(CONF_PORT)).
getOrElse(throw new ConfigurationException("The port to bind to must be specified"))
poolSize = ctx.getInteger(THREADS, DEFAULT_THREADS)
transactionTimeout = ctx.getInteger(CONF_TRANSACTION_TIMEOUT, DEFAULT_TRANSACTION_TIMEOUT)
backOffInterval = ctx.getInteger(CONF_BACKOFF_INTERVAL, DEFAULT_BACKOFF_INTERVAL)
logInfo("Configured Spark Sink with hostname: " + hostname + ", port: " + port + ", " +
"poolSize: " + poolSize + ", transactionTimeout: " + transactionTimeout + ", " +
"backoffInterval: " + backOffInterval)
} override def process(): Status = {
// This method is called in a loop by the Flume framework - block it until the sink is
// stopped to save CPU resources. The sink runner will interrupt this thread when the sink is
// being shut down.
logInfo("Blocking Sink Runner, sink will continue to run..")
blockingLatch.await()
Status.BACKOFF
} private[flume] def getPort(): Int = {
serverOpt
.map(_.getPort)
.getOrElse(
throw new RuntimeException("Server was not started!")
)
} /**
* Pass in a [[CountDownLatch]] for testing purposes. This batch is counted down when each
* batch is received. The test can simply call await on this latch till the expected number of
* batches are received.
* @param latch
*/
private[flume] def countdownWhenBatchReceived(latch: CountDownLatch) {
handler.foreach(_.countDownWhenBatchAcked(latch))
}
} /**
* Configuration parameters and their defaults.
*/
private[flume]
object SparkSinkConfig {
val THREADS = "threads"
val DEFAULT_THREADS = 10 val CONF_TRANSACTION_TIMEOUT = "timeout"
val DEFAULT_TRANSACTION_TIMEOUT = 60 val CONF_HOSTNAME = "hostname"
val DEFAULT_HOSTNAME = "0.0.0.0" val CONF_PORT = "port" val CONF_BACKOFF_INTERVAL = "backoffInterval"
val DEFAULT_BACKOFF_INTERVAL = 200
}
然后在你的streaming中使用如下的代码
package org.apache.spark.examples.streaming import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam
import java.net.InetSocketAddress /**
* Produces a count of events received from Flume.
*
* This should be used in conjunction with the Spark Sink running in a Flume agent. See
* the Spark Streaming programming guide for more details.
*
* Usage: FlumePollingEventCount <host> <port>
* `host` is the host on which the Spark Sink is running.
* `port` is the port at which the Spark Sink is listening.
*
* To run this example:
* `$ bin/run-example org.apache.spark.examples.streaming.FlumePollingEventCount [host] [port] `
*/
object FlumePollingEventCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println(
"Usage: FlumePollingEventCount <host> <port>")
System.exit(1)
} StreamingExamples.setStreamingLogLevels() val Array(host, IntParam(port)) = args val batchInterval = Milliseconds(2000) // Create the context and set the batch size
val sparkConf = new SparkConf().setAppName("FlumePollingEventCount")
val ssc = new StreamingContext(sparkConf, batchInterval) // Create a flume stream that polls the Spark Sink running in a Flume agent
val stream = FlumeUtils.createPollingStream(ssc, host, port) // Print out the count of events received from this server in each batch
stream.count().map(cnt => "Received " + cnt + " flume events." ).print() ssc.start()
ssc.awaitTermination()
}
}
Spark Streaming中向flume拉取数据的更多相关文章
- spark streaming中使用flume数据源
有两种方式,一种是sparkstreaming中的driver起监听,flume来推数据:另一种是sparkstreaming按照时间策略轮训的向flume拉数据. 最开始我以为只有第一种方法,但是尼 ...
- canal从mysql拉取数据,并以protobuf的格式往kafka中写数据
大致思路: canal去mysql拉取数据,放在canal所在的节点上,并且自身对外提供一个tcp服务,我们只要写一个连接该服务的客户端,去拉取数据并且指定往kafka写数据的格式就能达到以proto ...
- Spark Streaming中的操作函数分析
根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...
- Spark Streaming中的操作函数讲解
Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...
- 用setTimeout 代替 setInterval实时拉取数据
在开发中,我们常常碰到需要定时拉取网站数据,如: setInterval(function(){ $.ajax({ url: 'xx', success: function( response ){ ...
- HBase指定大量列集合的场景下并发拉取数据时卡住的问题排查
最近遇到一例,HBase 指定大量列集合的场景下,并发拉取数据,应用卡住不响应的情形.记录一下. 问题背景 退款导出中,为了获取商品规格编码,需要从 HBase 表 T 里拉取对应的数据. T 对商品 ...
- Mysql分片后分页排序拉取数据的方法
高并发大流量的互联网架构,一般通过服务层来访问数据库,随着数据量的增大,数据库需要进行水平切分,分库后将数据分布到不同的数据库实例(甚至物理机器)上,以达到降低数据量,增加实例数的扩容目的. 一旦涉及 ...
- Kafka消费者拉取数据异常Unexpected error code 2 while fetching data
Kafka消费程序间歇性报同一个错: 上网没查到相关资料,只好自己分析.通过进一步分析日志发现,只有在拉取某一个特定的topic的数据时报错,如果拉取其他topic的数据则不会报错.而从这个异常信息来 ...
- spark streaming中维护kafka偏移量到外部介质
spark streaming中维护kafka偏移量到外部介质 以kafka偏移量维护到redis为例. redis存储格式 使用的数据结构为string,其中key为topic:partition, ...
随机推荐
- 百度文库,linux下安装oracle客户端
linux单独安装oracle client(oracle客户端) 更新:2013-10-17 18:30 | 标签:linux oracle 1.要远程使用oracle,先下载下面三个文件,注意 ...
- 把电脑装成ubuntu系统了
2014年一月11日 今天本来想在自己的电脑上装双系统,电脑本来有个win7,想再装一个ubuntu. 本来想用wubi装,可是wubi没法安装13.10,并且wubi安装后,读写速度也不快. 在网上 ...
- CocoStudio基础教程(5)使用CocoStudio场景编辑器关联组件
1.概述 我们有了UI交互.有了动画人物.有了物理模拟,还差最后一步——将这些元素融合起来.这就要用到cocoStudio中的场景编辑器了.这次我们要将先前我们做过的所有东西都放到一个场景中去.这项工 ...
- [Effective JavaScript 笔记]第26条:使用bind方法实现函数的柯里化
bind方法的作用,除了有绑定函数到对象外,我们来看看bind方法的一些其它应用. 简单示例 例子:假设有一个装配URL字符串的简单函数.代码如下 function simpleURL(protoco ...
- 随机Loading
using UnityEngine; using System.Collections; public class Loading : MonoBehaviour { public bool m_Is ...
- log2取整效率测试
RMQ问题中有个ST算法,当然还有个标准算法.LCA问题可以转化为带限制的RMQ(RMQ+-1)问题来解决.我们姑且认为这些问题的时间复杂度是查询$O(1)$的.但是,注意到对于RMQ(/+-1)问题 ...
- XPath学习:轴(3)——descendant
XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML 文档中对元素和属性进行遍历. XPath 是 W3C XSLT 标准的主要元素,并且 XQuery 和 XPointe ...
- 全面解释StringBuilder、StringBuffer和String的关系
1. String 类 String的值是不可变的,这就导致每次对String的操作都会生成新的String对象,不仅效率低下,而且大量浪费有限的内存空间. String a = " ...
- 【转】Solr安全设置——对外禁用管理后台
本文转自:http://www.devnote.cn/article/94.html 测试于:Solr 4.5.1, Jdk 1.6.0_45, Tomcat 6.0.37 | CentOS 5.7 ...
- 多表利用DIH批量导入数据并建立索引注意事项
如果希望同时对多个表进行全文检索,那我们该如何处理呢?利用DIH导入数据并建立索引时.schema.xml中配置了uniqueKey为id <uniqueKey>id</unique ...