本文内容来源:https://www.dataquest.io/mission/133/creating-compelling-visualizations

本文数据来源:http://www.cdc.gov/nchs/nsfg.htm

本文摘要:介绍一个以matplotlib为底层,更容易定制化作图的库Seaborn

 

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。

 

安装seaborn的方法

pip install seaborn

原始数据展现(这是一份家庭调查的数据,preglngth - 怀孕周长, birthord - 孕妇的第几个孩子, birthwgt_lb1 - 婴儿重量(单位:磅), birthwgt_oz1 - 婴儿重量(单位:盅司), agepreg - 孕妇在分娩时的年龄)

import pandas as pd

births = pd.read_csv('births.csv')

直方图

在上一篇文章中已经使用过pandas.DataFrame.hist()来制作直方图了,现在用seaborn.distplot()来制作直方图,观察之间的差异

# 对上表的prglngth列做一个直方图

import matplotlib.pyplot as plt

import seaborn as sns #要注意的是一旦导入了seaborn,matplotlib的默认作图风格就会被覆盖成seaborn的格式

%matplotlib inline  # 为了在jupyter notebook里作图,需要用到这个命令

sns.distplot(births['prglngth'])

sns.plt.show()

可以看到与使用matplotlib作的直方图最大的区别在于有一条密度曲线(KDE),可以通过设置参数去掉这条默认的曲线

sns.distplot(births['prglngth'], kde=False)

sns.plt.show()

 

那么Pandas与Seaborn之间有什么区别呢?

其实两者都是使用了matplotlib来作图,但是有非常不同的设计差异

  1. 在只需要简单地作图时直接用Pandas,但要想做出更加吸引人,更丰富的图就可以使用Seaborn
  2. Pandas的作图函数并没有太多的参数来调整图形,所以你必须要深入了解matplotlib
  3. Seaborn的作图函数中提供了大量的参数来调整图形,所以并不需要太深入了解matplotlib
  4. Seaborn的API:https://stanford.edu/~mwaskom/software/seaborn/api.html#style-frontend

 

# 对上图进行更多的配置

sns.set_style('dark')                # 该图使用黑色为背景色

sns.distplot(births['prglngth'], kde=False) # 不显示密度曲线

sns.axlabel('Birth number', 'Frequency') # 设置X轴和Y轴的坐标含义

sns.plt.show()

 

箱型图

# 以birthord作为x轴,agepreg作为y轴,做一个箱型图

sns.boxplot(x='birthord', y='agepreg', data=births)

sns.plt.show()

 

多变量作图

seaborn可以一次性两两组合多个变量做出多个对比图,有n个变量,就会做出一个n × n个格子的图,譬如有2个变量,就会产生4个格子,每个格子就是两个变量之间的对比图

  1. var1  vs  var1
  2. var1  vs  var2
  3. var2  vs  var1
  4. var2  vs  var2

相同的两个变量之间(var1  vs  var1 和 var2  vs  var2)以直方图展示,不同的变量则以散点图展示(var1  vs  var2 和var2  vs  var1)

要注意的是数据中不能有NaN(缺失的数据),否则会报错

sns.pairplot(births, vars=['agepreg', 'prglngth','birthord'])

sns.plt.show()

数据可视化(三)- Seaborn简易入门的更多相关文章

  1. d3.js:数据可视化利器之快速入门

    hello,data! 在进入d3.js之前,我们先用一个小例子回顾一下将数据可视化的基本流程. 任务 用横向柱状图来直观显示以下数据: var data = [10,15,23,78,57,29,3 ...

  2. Python Seaborn综合指南,成为数据可视化专家

    概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...

  3. Seaborn数据可视化入门

    在本节学习中,我们使用Seaborn作为数据可视化的入门工具 Seaborn的官方网址如下:http://seaborn.pydata.org 一:definition Seaborn is a Py ...

  4. kaggle入门项目:Titanic存亡预测(三)数据可视化与统计分析

    ---恢复内容开始--- 原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Ach ...

  5. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  6. Python数据可视化的四种简易方法

    摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...

  7. 数据可视化matplotlib、seaborn、pydotplus

    如需转发,请注明出处:小婷儿的python  https://www.cnblogs.com/xxtalhr/p/10486560.html 一.数据可视化 data.mat 链接:https://p ...

  8. 数据可视化-svg入门基础(二)

    接上一篇:数据可视化-svg入门基础(一),基础一主要是介绍了svg概念,元素样式设置等. svg是(scalable vector graphic)伸缩矢量图像. 一.目录 (1)图形元素 (2)文 ...

  9. seaborn教程4——分类数据可视化

    https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...

随机推荐

  1. JavaScript 之 页面跳转及Frame动态加载

    一.页面跳转 JS跳转大概有以下五种方式: 1.跳转到B页面 <script language="javascript" type="text/javascript ...

  2. 基于PHP的对接电子面单接口平台案例

    电子面单接口目前有三种对接方式,快递电子面单接口.菜鸟电子面单接口和快递鸟电子面单接口.这三种接口各有特点. 一.电子面单接口定义 1. 快递电子面单接口:快递公司自己开发的电子面单服务, 商家使用必 ...

  3. Maven学习小结(六 setting.xml详解[转])

    当Maven运行过程中的各种配置,例如pom.xml,不想绑定到一个固定的project或者要分配给用户时,我们使用settings.xml中的settings元素来确定这些配置.这包含了本地仓库位置 ...

  4. JPA与ORM以及Hibernate

  5. vb.net 使用 Regex Replace 正则 替换 Html字串的table中tbody第一个tr下的td为th

    本次示例效果如下: TextBox1中输入如下字符串: 12<table><tbody><tr><td>1<br/>11</td> ...

  6. 关于XShell的常见使用和设置以及Linux中的常见命令.

    本文部分转自:http://sundful.iteye.com/blog/704079 和 http://www.vckai.com/p/5 有时候在XShell中操作的一些命令傻傻的分不清这个命令到 ...

  7. hdu 3622 二分+2-SAT判定

    思路:如题 #include<iostream> #include<algorithm> #include<cstring> #include<cstdio& ...

  8. 20个2014年最优秀的PHP框架

    http://www.php100.com/html/it/mobile/2014/0813/7198.htmlhttp://medoo.in/api/select 

  9. 初学JSP+Servlet常见的错误

    web编程中常见的错误: 一.404(要访问的资源没有找到) 1.web程序有没有部署(将项目到tomcat中) 2.url有没有写错(包括大小写,包括项目有没有重命名) 3.有没有将jsp/html ...

  10. Linux -Yum 命令详解

    yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...