数据可视化(三)- Seaborn简易入门
本文内容来源:https://www.dataquest.io/mission/133/creating-compelling-visualizations
本文数据来源:http://www.cdc.gov/nchs/nsfg.htm
本文摘要:介绍一个以matplotlib为底层,更容易定制化作图的库Seaborn
Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。
安装seaborn的方法
pip install seaborn
原始数据展现(这是一份家庭调查的数据,preglngth - 怀孕周长, birthord - 孕妇的第几个孩子, birthwgt_lb1 - 婴儿重量(单位:磅), birthwgt_oz1 - 婴儿重量(单位:盅司), agepreg - 孕妇在分娩时的年龄)
import pandas as pd births = pd.read_csv('births.csv')
直方图
在上一篇文章中已经使用过pandas.DataFrame.hist()来制作直方图了,现在用seaborn.distplot()来制作直方图,观察之间的差异
# 对上表的prglngth列做一个直方图 import matplotlib.pyplot as plt import seaborn as sns #要注意的是一旦导入了seaborn,matplotlib的默认作图风格就会被覆盖成seaborn的格式 %matplotlib inline # 为了在jupyter notebook里作图,需要用到这个命令 sns.distplot(births['prglngth']) sns.plt.show()
可以看到与使用matplotlib作的直方图最大的区别在于有一条密度曲线(KDE),可以通过设置参数去掉这条默认的曲线
sns.distplot(births['prglngth'], kde=False) sns.plt.show()
那么Pandas与Seaborn之间有什么区别呢?
其实两者都是使用了matplotlib来作图,但是有非常不同的设计差异
- 在只需要简单地作图时直接用Pandas,但要想做出更加吸引人,更丰富的图就可以使用Seaborn
- Pandas的作图函数并没有太多的参数来调整图形,所以你必须要深入了解matplotlib
- Seaborn的作图函数中提供了大量的参数来调整图形,所以并不需要太深入了解matplotlib
- Seaborn的API:https://stanford.edu/~mwaskom/software/seaborn/api.html#style-frontend
# 对上图进行更多的配置 sns.set_style('dark') # 该图使用黑色为背景色 sns.distplot(births['prglngth'], kde=False) # 不显示密度曲线 sns.axlabel('Birth number', 'Frequency') # 设置X轴和Y轴的坐标含义 sns.plt.show()
箱型图
# 以birthord作为x轴,agepreg作为y轴,做一个箱型图 sns.boxplot(x='birthord', y='agepreg', data=births) sns.plt.show()
多变量作图
seaborn可以一次性两两组合多个变量做出多个对比图,有n个变量,就会做出一个n × n个格子的图,譬如有2个变量,就会产生4个格子,每个格子就是两个变量之间的对比图
- var1 vs var1
- var1 vs var2
- var2 vs var1
- var2 vs var2
相同的两个变量之间(var1 vs var1 和 var2 vs var2)以直方图展示,不同的变量则以散点图展示(var1 vs var2 和var2 vs var1)
要注意的是数据中不能有NaN(缺失的数据),否则会报错
sns.pairplot(births, vars=['agepreg', 'prglngth','birthord']) sns.plt.show()
数据可视化(三)- Seaborn简易入门的更多相关文章
- d3.js:数据可视化利器之快速入门
hello,data! 在进入d3.js之前,我们先用一个小例子回顾一下将数据可视化的基本流程. 任务 用横向柱状图来直观显示以下数据: var data = [10,15,23,78,57,29,3 ...
- Python Seaborn综合指南,成为数据可视化专家
概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...
- Seaborn数据可视化入门
在本节学习中,我们使用Seaborn作为数据可视化的入门工具 Seaborn的官方网址如下:http://seaborn.pydata.org 一:definition Seaborn is a Py ...
- kaggle入门项目:Titanic存亡预测(三)数据可视化与统计分析
---恢复内容开始--- 原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Ach ...
- Python数据可视化-seaborn库之countplot
在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...
- Python数据可视化的四种简易方法
摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...
- 数据可视化matplotlib、seaborn、pydotplus
如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10486560.html 一.数据可视化 data.mat 链接:https://p ...
- 数据可视化-svg入门基础(二)
接上一篇:数据可视化-svg入门基础(一),基础一主要是介绍了svg概念,元素样式设置等. svg是(scalable vector graphic)伸缩矢量图像. 一.目录 (1)图形元素 (2)文 ...
- seaborn教程4——分类数据可视化
https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...
随机推荐
- JavaScript 之 页面跳转及Frame动态加载
一.页面跳转 JS跳转大概有以下五种方式: 1.跳转到B页面 <script language="javascript" type="text/javascript ...
- 基于PHP的对接电子面单接口平台案例
电子面单接口目前有三种对接方式,快递电子面单接口.菜鸟电子面单接口和快递鸟电子面单接口.这三种接口各有特点. 一.电子面单接口定义 1. 快递电子面单接口:快递公司自己开发的电子面单服务, 商家使用必 ...
- Maven学习小结(六 setting.xml详解[转])
当Maven运行过程中的各种配置,例如pom.xml,不想绑定到一个固定的project或者要分配给用户时,我们使用settings.xml中的settings元素来确定这些配置.这包含了本地仓库位置 ...
- JPA与ORM以及Hibernate
- vb.net 使用 Regex Replace 正则 替换 Html字串的table中tbody第一个tr下的td为th
本次示例效果如下: TextBox1中输入如下字符串: 12<table><tbody><tr><td>1<br/>11</td> ...
- 关于XShell的常见使用和设置以及Linux中的常见命令.
本文部分转自:http://sundful.iteye.com/blog/704079 和 http://www.vckai.com/p/5 有时候在XShell中操作的一些命令傻傻的分不清这个命令到 ...
- hdu 3622 二分+2-SAT判定
思路:如题 #include<iostream> #include<algorithm> #include<cstring> #include<cstdio& ...
- 20个2014年最优秀的PHP框架
http://www.php100.com/html/it/mobile/2014/0813/7198.htmlhttp://medoo.in/api/select
- 初学JSP+Servlet常见的错误
web编程中常见的错误: 一.404(要访问的资源没有找到) 1.web程序有没有部署(将项目到tomcat中) 2.url有没有写错(包括大小写,包括项目有没有重命名) 3.有没有将jsp/html ...
- Linux -Yum 命令详解
yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...