bzoj1563
P<=10一开始是吓死我了
后来想到这就是一个经典的决策单调性解决1d1d动态规划的题目
像决策单调性完全可以打表找规律,这里有一篇严谨的证明https://www.byvoid.com/blog/noi-2009-poet
关于1d1d动归的优化可以看《1d1d动态规划优化初步》
注意可能会爆longlong,所以用extended计算
type node=record
l,r,x:longint;
end; var q:array[..] of node;
f:array[..] of extended;
s:array[..] of longint;
x,h,r,i,n,l,p,tt:longint;
ss:string; function pow(x:extended):extended;
var i:longint;
begin
pow:=;
for i:= to p do
pow:=pow*x;
end; function calc(j,i:longint):extended;
begin
exit(f[j]+pow(abs(s[i]-s[j]+i-j--l)));
end; function max(a,b:longint):longint;
begin
if a>b then exit(a) else exit(b);
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure update(i:longint);
var l,t,m,ans:longint;
begin
if calc(i,n)>calc(q[r].x,n) then exit;
while (i<q[r].l) and (calc(i,q[r].l)<calc(q[r].x,q[r].l)) do dec(r); l:=max(i+,q[r].l);
t:=q[r].r;
ans:=min(n,q[r].r+);
while l<=t do
begin
m:=(l+t) shr ;
if calc(i,m)<calc(q[r].x,m) then
begin
ans:=m;
t:=m-;
end
else l:=m+;
end;
q[r].r:=ans-;
inc(r);
q[r].x:=i;
q[r].l:=ans;
q[r].r:=n;
end; begin
readln(tt);
while tt> do
begin
dec(tt);
readln(n,l,p);
s[]:=;
for i:= to n do
begin
readln(ss);
x:=length(ss);
s[i]:=s[i-]+x;
end;
h:=;
r:=;
q[].x:=;
q[].l:=;
q[].r:=n;
for i:= to n do
begin
while i>q[h].r do inc(h);
f[i]:=calc(q[h].x,i);
update(i);
end;
if f[i]<=1e18 then writeln(trunc(f[i])) //注意这里trunc不能0:
else writeln('Too hard to arrange');
writeln('--------------------');
end;
end.
bzoj1563的更多相关文章
- [bzoj1563][诗人小g]
bzoj1563 思路 首先考虑\(n^2\)的暴力dp,用sum[i]表示前i句话的长度总和.f[i]表示前i句话最小的不协调度之和.转移的时候考虑枚举前面的每个点,找到转移的最优秀的那个点. 然后 ...
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- bzoj1563: [NOI2009]诗人小G
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- BZOJ1563 NOI2009 诗人小G【决策单调性优化DP】
LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他 ...
随机推荐
- OpenWrt编译到底脚本
在办公室编译OpenWrt,费时很久,原因有两个. 一是办公室网络环境比较糟糕,经常断线不说,很多技术网站间歇性的连不上,不是撞到404就是DNS解析失败等. 二是初次编译OpenWrt时需要从网上下 ...
- 学习Linux第二天
1.Linux目录: 保存系统命令:根目录下的bin和sbin,usr下的bin和sbin /etc:保存配件 /usr:系统软件资源目录 /proc:系统内存分配目录,直接写入内存的 /var:保存 ...
- sqlserver insert into select
Insert into [fenxi].[dbo].[analysisresult]( [dayofweek] ,[quarter] ,[reporttime] ,[type] ,[value]) s ...
- stdint.h 文件 int8_t uint8_t int16_t uint16_t
http://blog.chinaunix.net/uid-26588712-id-3068151.html c++ 数据类型 按照posix标准,一般整型对应的*_t类型为:1字节 uint ...
- mybatis集成spring的事务管理
第一 创建一个测试实体 public class Order { private int id; private String orderName; public Order(String order ...
- memmove和memcpy 以及strcmp strcpy几个库函数的实现
memmove和memcpy 1.memmove 函数原型:void *memmove(void *dest, const void *source, size_t count) 返回值说明:返回指向 ...
- ubuntu下opencv 3.0和python2.7安装测试
1.安装opencv所需的库(编译器.必须库.可选库) sudo apt-get install build-essential sudo apt-get install cmake git libg ...
- HDU4612 Warm up 边双连通分量&&桥&&树直径
题目的意思很简单,给你一个已经连通的无向图,我们知道,图上不同的边连通分量之间有一定数量的桥,题目要求的就是要你再在这个图上加一条边,使得图的桥数目减到最少. 首先要做的就是找出桥,以及每个点所各自代 ...
- zoj 2974 Just Pour the Water (矩阵快速幂,简单)
题目 对于案例的解释请见下图: 这道要变动提取一下矩阵,之后就简单了 具体解释可看代码: #include <string.h> #include <stdio.h> #inc ...
- POJ 1330 Nearest Common Ancestors(求最近的公共祖先)
题意:给出一棵树,再给出两个节点a.b,求离它们最近的公共祖先.方法一: 先用vector存储某节点的子节点,fa数组存储某节点的父节点,最后找出fa[root]=0的根节点root. 之后 ...