BZOJ 1297 迷路(矩阵)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1297
题意:给出一个带权有向图,权值为1-9,顶点个数最多为10。从1出发恰好在T时刻到达n的路径有多少条?
思路:T较大,应使用矩阵。矩阵要求边权为1.因此,将每个点i拆为9个点,i1到i9,前一个向后一个连边1。对于原图中的边<u,v,w>,u拆完后的第w个点向v拆完后第一个点连边1。求矩阵T次幂即可。
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <map>
#define abs(x) ((x)>=0?(x):-(x))
#define i64 long long
#define u32 unsigned int
#define u64 unsigned long long
#define clr(x,y) memset(x,y,sizeof(x))
#define CLR(x) x.clear()
#define ph(x) push(x)
#define pb(x) push_back(x)
#define Len(x) x.length()
#define SZ(x) x.size()
#define PI acos(-1.0)
#define sqr(x) ((x)*(x))
#define FOR0(i,x) for(i=0;i<x;i++)
#define FOR1(i,x) for(i=1;i<=x;i++)
#define FOR(i,a,b) for(i=a;i<=b;i++)
#define FORL0(i,a) for(i=a;i>=0;i--)
#define FORL1(i,a) for(i=a;i>=1;i--)
#define FORL(i,a,b)for(i=a;i>=b;i--)
#define rush() int C; for(scanf("%d",&C);C--;)
#define Rush(n) while(scanf("%d",&n)!=-1)
using namespace std;
void RD(int &x){scanf("%d",&x);}
void RD(i64 &x){scanf("%lld",&x);}
void RD(u32 &x){scanf("%u",&x);}
void RD(double &x){scanf("%lf",&x);}
void RD(int &x,int &y){scanf("%d%d",&x,&y);}
void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}
void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}
void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}
void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}
void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}
void RD(char &x){x=getchar();}
void RD(char *s){scanf("%s",s);}
void RD(string &s){cin>>s;}
void PR(int x) {printf("%d\n",x);}
void PR(i64 x) {printf("%lld\n",x);}
void PR(u32 x) {printf("%u\n",x);}
void PR(double x) {printf("%.4lf\n",x);}
void PR(char x) {printf("%c\n",x);}
void PR(char *x) {printf("%s\n",x);}
void PR(string x) {cout<<x<<endl;}
const int mod=100000007;
const i64 inf=((i64)1)<<40;
const double dinf=1000000000000000000.0;
const int INF=2000000000;
const int HASHSIZE=100007;
const int N=1000005;
int n,m;
struct Matrix
{
int a[95][95];
void init(int x)
{
clr(a,0);
int i;
if(x==1)
{
FOR1(i,n) a[i][i]=1;
}
}
Matrix operator*(Matrix p)
{
Matrix ans;
ans.init(0);
int i,j,k;
FOR1(k,n) FOR1(i,n) FOR1(j,n)
{
ans.a[i][j]+=a[i][k]*p.a[k][j];
ans.a[i][j]%=2009;
}
return ans;
}
Matrix pow(int m)
{
Matrix ans,p=*this;
ans.init(1);
while(m)
{
if(m&1) ans=ans*p;
p=p*p;
m>>=1;
}
return ans;
}
};
Matrix a;
char s[15][15];
int cal(int x,int y)
{
return (x-1)*9+y;
}
int main()
{
RD(n,m);
int i;
FOR1(i,n) RD(s[i]+1);
a.init(0);
int j;
FOR1(i,n)
{
FOR1(j,8) a.a[cal(i,j)][cal(i,j+1)]=1;
}
FOR1(i,n) FOR1(j,n) if(s[i][j]!='0')
{
a.a[cal(i,s[i][j]-'0')][cal(j,1)]=1;
}
n*=9;
a=a.pow(m);
int ans=a.a[cal(1,1)][cal(n/9,1)];
PR(ans);
}
BZOJ 1297 迷路(矩阵)的更多相关文章
- BZOJ 1297 迷路(矩阵快速幂)
很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...
- BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )
递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3* ...
- [BZOJ 1297][SCOI 2009]迷路(矩阵快速幂)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1297 分析:如果每条边的边权都是1,那么就相当于对邻接矩阵自乘T次(因为写一下递推式子 ...
- BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- 「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」
题意 边权\(w \in [1, 9]\)的\(n\)个结点的有向图,图上从\(1\)到\(n\)长度为\(d\)的路径计数,\(n \leq 10\). 题解 如果边权为\(1\)很经典,设\(f[ ...
- [BZOJ 1297][SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1418 Solved: 1017[Submit][Status ...
- bzoj 1297 矩阵乘法变形
首先对于矩阵乘法的功能有很多,记得有篇论文叫矩阵乘法在信息学竞赛中的应用,里面详细介绍了矩阵的 作用 其中一个就是求图的固定时间方案数,也就是给定一张图,每两个点之间由一条边长为1的边相连, 求任意两 ...
- 【BZOJ 1297】[SCOI2009]迷路
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果点与点之间的距离都是1的话. 那么T次方之后的矩阵上a[1][n]就是所求答案了. 但是这一题的边权可能会大于1 但最多为10 ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
随机推荐
- 外企iOS开发的笔试题
一组外企iOS开发的笔试题,您能回答出来吗?从群里收集来的. (miki西游@mikixiyou的文档,原文链接: http://mikixiyou.iteye.com/blog/1546376 转 ...
- MVC中的几个问题汇总
1.The model backing the 'XXXXDBContext' context has changed since the database was created. Either m ...
- Extmail maildrop错误
错误: <liuyb@5teacher.com>: Command died with status 127: "maildrop". Command output: ...
- SQL SERVER 強制指定使用索引 -转载 只为学习
今天很高兴 ,有学会了一种数据库优化的方式,哈哈 今天遇到一個查詢逾時的問題:兩段SQL,只差在WHERE,一個是WHERE COLUMN1='AAA',一個是WHERE COLUMN1='BBB', ...
- windows android studio 编译Jni动态库
项目需要,折腾了半天搞定windows android studio环境编译Jni动态库,现记录下来. 准备安装环境: 1. android studio 下载地址是http://www.androi ...
- Codeforces Gym 100342J Problem J. Triatrip 三元环
题目链接: http://codeforces.com/gym/100342 题意: 求三元环的个数 题解: 用bitset分别统计每个点的出度的边和入度的边. 枚举每一条边(a,b),计算以b为出度 ...
- Entity Framework 基础
在忙碌中渡过了5,6,7 月份,现在些抽点时间对Entity Framework的使用做一些基础的回忆. Entity Framework 是什么? Entity Framework(EF)和我们所熟 ...
- web系统之session劫持解决
session劫持是一种比较复杂的攻击方法.大部分互联网上的电脑多存在被攻击的危险.这是一种劫持tcp协议的方法,所以几乎所有的局域网,都存在被劫持 可能. 两台主机要想进行TCP通信,必须经过一个三 ...
- uva 11825
刘书上例题 关于集合的动态规划 #include <cstdio> #include <cstdlib> #include <cmath> #include &l ...
- HDU4612 Warm up 边双连通分量&&桥&&树直径
题目的意思很简单,给你一个已经连通的无向图,我们知道,图上不同的边连通分量之间有一定数量的桥,题目要求的就是要你再在这个图上加一条边,使得图的桥数目减到最少. 首先要做的就是找出桥,以及每个点所各自代 ...