题目链接:

D. Tree Construction

D. Tree Construction
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

During the programming classes Vasya was assigned a difficult problem. However, he doesn't know how to code and was unable to find the solution in the Internet, so he asks you to help.

You are given a sequence a, consisting of n distinct integers, that is used to construct the binary search tree. Below is the formal description of the construction process.

  1. First element a1 becomes the root of the tree.
  2. Elements a2, a3, ..., an are added one by one. To add element ai one needs to traverse the tree starting from the root and using the following rules:
    1. The pointer to the current node is set to the root.
    2. If ai is greater than the value in the current node, then its right child becomes the current node. Otherwise, the left child of the current node becomes the new current node.
    3. If at some point there is no required child, the new node is created, it is assigned value ai and becomes the corresponding child of the current node.
 
Input
 

The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the length of the sequence a.

The second line contains n distinct integers ai (1 ≤ ai ≤ 109) — the sequence a itself.

Output
 

Output n - 1 integers. For all i > 1 print the value written in the node that is the parent of the node with value ai in it.

Examples
 
input
3
1 2 3
output
1 2
input
5
4 2 3 1 6
output
4 2 2 4

题意:

给一个序列,构造一个二叉搜索树,然后输出每个节点的父节点;

思路:

在构造二叉搜索树的时候,每插入一个节点时它的插入位置是一定的,要么插在最大的比它小的数的右边,要么插在最小的比它
大的数左边,用线段树维护最大最小值就可以了;也可以用set+map模拟建树的过程; AC代码:
#include <bits/stdc++.h>
/*
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio>
*/
using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f;
const int N=1e5+;
int n,l[N],r[N],f[N];
struct Tree
{
int l,r,mmin,mmax;
}tree[*N];
void pushup(int node)
{
tree[node].mmin=min(tree[*node].mmin,tree[*node+].mmin);
tree[node].mmax=max(tree[*node].mmax,tree[*node+].mmax);
}
void build(int node,int L,int R)
{
tree[node].l=L;
tree[node].r=R;
tree[node].mmax=;
tree[node].mmin=inf;
if(L==R)return ;
int mid=(L+R)>>;
build(*node,L,mid);
build(*node+,mid+,R);
}
void update(int node,int pos)
{
// cout<<tree[node].l<<" "<<tree[node].r<<" "<<pos<<"@"<<"\n";
if(tree[node].l==tree[node].r&&tree[node].l==pos)
{
tree[node].mmax=tree[node].mmin=pos;
return ;
}
int mid=(tree[node].l+tree[node].r)>>;
if(pos<=mid)update(*node,pos);
else update(*node+,pos);
pushup(node);
}
int query(int node,int L,int R,int flag)
{
if(L<=tree[node].l&&R>=tree[node].r)
{
if(flag)return tree[node].mmax;
else return tree[node].mmin;
}
int mid=(tree[node].l+tree[node].r)>>;
if(R<=mid)return query(*node,L,R,flag);
else if(L>mid)return query(*node+,L,R,flag);
else
{
if(flag)return max(query(*node,L,mid,flag),query(*node+,mid+,R,flag));
else return min(query(*node,L,mid,flag),query(*node+,mid+,R,flag));
}
}
struct Po
{
int a,pos,num;
}po[N];
int cmp1(Po x,Po y)
{
return x.a<y.a;
}
int cmp2(Po x,Po y)
{
return x.pos<y.pos;
}
int main()
{
scanf("%d",&n);
build(,,n);
Riep(n)
{
scanf("%d",&po[i].a);
po[i].pos=i;
}
sort(po+,po+n+,cmp1);
Riep(n)po[i].num=i,f[i]=po[i].a;
sort(po+,po+n+,cmp2);
update(,po[].num);
for(int i=;i<=n;i++)
{
int s=query(,,po[i].num,);
if(s==||(s!=&&r[s]))
{
s=query(,po[i].num,n,);
l[s]=po[i].num;
}
else
{
r[s]=po[i].num;
}
update(,po[i].num);
printf("%d ",f[s]);
} return ;
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9+10;
const int N=1e5+10;
const int maxn=1e3+20;
const double eps=1e-12; set<int>s;
map<int,int>le,ri;
set<int>::iterator it;
int main()
{
int n,x;
read(n);
read(x);s.insert(x);
For(i,2,n)
{
read(x);
it=s.lower_bound(x);
int pos=*it;
if(le[pos]==0&&it!=s.end())le[pos]=x;
else
{
it--;
pos=*it;
ri[pos]=x;
}
s.insert(x);
printf("%d ",pos);
}
return 0;
}

  

codeforces 675D D. Tree Construction(线段树+BTS)的更多相关文章

  1. 【Codeforces 675D】Tree Construction

    [链接] 我是链接,点我呀:) [题意] 依次序将数字插入到排序二叉树当中 问你每个数字它的父亲节点上的数字是啥 [题解] 按次序处理每一个数字 对于数字x 找到最小的大于x的数字所在的位置i 显然, ...

  2. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  3. hdu 5274 Dylans loves tree(LCA + 线段树)

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  4. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  5. Educational Codeforces Round 6 E. New Year Tree dfs+线段树

    题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...

  6. Codeforces 620E New Year Tree(线段树+位运算)

    题目链接 New Year Tree 考虑到$ck <= 60$,那么用位运算统计颜色种数 对于每个点,重新标号并算出他对应的进和出的时间,然后区间更新+查询. 用线段树来维护. #includ ...

  7. Codeforces 620E New Year Tree【线段树傻逼题】

    LINK 题目大意 给你一棵树 让你支持子树染色,子树查询颜色个数,颜色数<=60, 节点数<=4e5 思路 因为颜色数很少,考虑状态压缩变成二进制 然后直接在dfs序上用线段树维护就可以 ...

  8. Codeforces Gym 100803G Flipping Parentheses 线段树+二分

    Flipping Parentheses 题目连接: http://codeforces.com/gym/100803/attachments Description A string consist ...

  9. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

随机推荐

  1. JS阻塞的问题

    常见问题    http://www.zhihu.com/question/23101413   阻塞特性:        JS 有个很无语的阻塞特性,就是当浏览器在执行JS 代码时,不能同时做其他任 ...

  2. js逻辑与,或,非

    [转,未整理] 1.逻辑非(!) 如果一个操作数是一个对象,返回true; 如果一个操作数是一个空字符串,返回false; 如果一个操作数是一个非空字符串,返回false; 如果一个操作数是一个数值0 ...

  3. Java学习笔记之方法重载,动态方法调度和抽象类

    一.方法重载 如果子类中的方法与它的超类中的方法有相同的方法名,则称子类中的方法重载超类中的方法,特别是当超类和子类中的方法名和参数类型都相同时,在子类中调用该方法时,超类中的方法会被隐藏.考虑下面程 ...

  4. poj3250 Bad Hair Day

    Description Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow ...

  5. easy Html5 - Jquery Mobile之ToolBars(Header and Footer)

    jquery 在web js框架上的风暴还在继续却也随着移动终端走向了mobile:那么jquery mobile到底包括些什么呢 简介工具栏是在移动网站和应用中的头部,尾部或者内容中的工具条:Jqu ...

  6. C++头文件中预编译宏的目的

    C++头文件中预编译宏的目的 eg: #ifndef _FACTORY_H_#define _FACTORY_H_......#endif //~_FACTORY_H_ 防止头文件被重复包含,导致变量 ...

  7. Codeforces Round #338 (Div. 2) C. Running Track dp

    C. Running Track 题目连接: http://www.codeforces.com/contest/615/problem/C Description A boy named Ayrat ...

  8. linux C 9*9

    #include<stdio.h> #include<conio.h> #include <windows.h> void Gotoxy(int x, int y) ...

  9. SaundProgressBar

    https://github.com/eltld/SaundProgressBar

  10. 使用NPOI导出DataTable到Excel

    使用C#对DataTable导出到Excel是我们工作当中比较多用到的场景,微软提供了Microsoft.Office.Interop.Excel组件可以进行操作,但是该组件在数据量大的时候速度很慢, ...