Right triangles with integer coordinates

The points P (x1, y1) and Q (x2, y2) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.

There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is,0 ≤ x1, y1, x2, y2 ≤ 2.

Given that 0 ≤ x1, y1, x2, y2 ≤ 50, how many right triangles can be formed?


格点直角三角形

点P(x1, y1)和点Q(x2, y2)都是格点,并与原点O(0,0)构成ΔOPQ。

当点P和点Q的所有坐标都在0到2之间,也就是说0 ≤ x1, y1, x2, y2 ≤ 2时,恰好能构造出14个直角三角形。

如果0 ≤ x1, y1, x2, y2 ≤ 50,能构造出多少个直角三角形?

 解题

先网上找到的答案,然后看题解中,前面几题给出了暴露的方法,遍历所有的点 ,判断是否是直角三角形就好了,最后的结果要除以2,,因为两个点是可以互换的。

Java

package Level3;

public class PE091{
static void run(){
int N = 50;
int count = 0;
// 第一个顶点
for(int x1 = 0; x1<=N;x1++){
for(int y1 = 0;y1<=N ;y1++){
if(x1==0 && y1==0) continue;
// 第二个顶点
for(int x2 = 0;x2<=N;x2++){
for(int y2=0;y2<=N;y2++){
if(x2==0&&y2==0 || x1==x2&&y1==y2)
continue;
//判断是否是三角形
double d1 = getDistance(0,0,x1,y1);
double d2 = getDistance(0,0,x2,y2);
double d3 = getDistance(x1,y1,x2,y2);
if(d1+d2==d3|| d1+d3==d2||d2+d3==d1)
count++;
}
}
}
}
System.out.println(count/2);
}
// 14234
// running time=0s71ms
static double getDistance(int x1,int y1,int x2,int y2){
double d1 = (x1-x2)*(x1-x2);
double d2 = (y1-y2)*(y1-y2);
return d1+d2;
} public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}

参考链接1  参考链接2

上面给出来很好的不用暴力的方法

对于直角在原点的情况:

P Q两点只能在x轴  y轴上,固定一点看另一点,显然有50中可能,然而这一点也有50种可能,共2500种

对于直角在x轴或者y轴的情况:

当P 在x轴上的某点时候,Q的x坐标显然要和P 的一样,PQ都各有50个位置,共2500种

当P 在y轴的时候,也有2500种

对于直角在方格内部的时候:

要使得是直角三角形:OP要垂直PQ

OP的斜率:k = dy/dx  (dy/dx是最简分数)    其中P的坐标设为(x,y)

则PQ的斜率是:-dx/dy

如何根据斜率,找到Q的整数点,或者Q点的个数。

当P点的y轴值>Q点的y轴的值时候:

(如上图所示)可以发现:Q1 Q2 把PQ3等分成三份。三个Q点都是整数点。

对斜率为k = dy/dx :可以通过一个dy * dx的方格表示出来,所以,对于P(x,y)点,x每加一个dx y每减一个dy都是一个整数Q点,那么有多少个符合要求的点?只需要看最大能走多少步,

对于PQ的斜率是dx/dy,当P(x,y),   对x而言最大的步数是:(N-x)/dy ,对y而言最大的步数是:y/dx

这样其最小值就是Q的整数点数:MIN((N-x)/dy,y/dx)

当P点的y轴值<Q点的y轴的值时候:


PQ的斜率是:-dx/dy

P(x,y) x向左走的最大步数:x/dy y向上走的最大步数:(N-y)/dx

这样其最小值就是Q的整数点数:MIN(x/dy,(N-y)/dx)

这与上面链接的结果不一样,根据运行结果发现答案是一样的

其实吧 对于P点的坐标可以是在N*N方格中的任意一点,P的坐标是可以对称的,所以可以直接乘以二的。

JAVA

package Level3;

public class PE091{
static void run1(){
int N = 50;
// 直角在原点,直角在x轴 直角在y轴,个数都是N*N
int result =N*N*3;
//下面只需要对直角在方格内部的情况
for(int x = 1;x<= N;x++){
for(int y=1;y<= N;y++){
int fact = gcd(x,y);
result += Math.min(y*fact/x, (N-x)*fact/y);
result += Math.min(x*fact/y, (N-y)*fact/x);
}
}
System.out.println(result);
}
// 14234
// running time=0s78ms
static int gcd(int x,int y){
if(x<y){
int tmp = x;
x = y;
y = tmp;
}
int r = x%y;
while(r!=0){
int tmp =x;
x = y;
y = tmp%x;
r = x%y;
}
return y;
}
static void run(){
int N = 50;
int count = 0;
// 第一个顶点
for(int x1 = 0; x1<=N;x1++){
for(int y1 = 0;y1<=N ;y1++){
if(x1==0 && y1==0) continue;
// 第二个顶点
for(int x2 = 0;x2<=N;x2++){
for(int y2=0;y2<=N;y2++){
if(x2==0&&y2==0 || x1==x2&&y1==y2)
continue;
//判断是否是三角形
double d1 = getDistance(0,0,x1,y1);
double d2 = getDistance(0,0,x2,y2);
double d3 = getDistance(x1,y1,x2,y2);
if(d1+d2==d3|| d1+d3==d2||d2+d3==d1)
count++;
}
}
}
}
System.out.println(count/2);
}
// 14234
// running time=0s71ms
static double getDistance(int x1,int y1,int x2,int y2){
double d1 = (x1-x2)*(x1-x2);
double d2 = (y1-y2)*(y1-y2);
return d1+d2;
} public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}

Python

# coding=gbk

import time as time
from itertools import combinations
def run():
N = 50
count = N*N*3
for x in range(1,N+1):
for y in range(1,N+1):
fact = gcd(x,y)
count += min((N-x)*fact/y,y*fact/x)*2
print count #
# running time= 0.00300002098083 s
def gcd(x,y):
if x<y:
x,y = y,x
while x%y!=0:
tmp = x
x = y
y = tmp%y
return y t0 = time.time()
run()
t1 = time.time()
print "running time=",(t1-t0),"s"

Project Euler 91:Right triangles with integer coordinates 格点直角三角形的更多相关文章

  1. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  2. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  3. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  4. Python练习题 032:Project Euler 004:最大的回文积

    本题来自 Project Euler 第4题:https://projecteuler.net/problem=4 # Project Euler: Problem 4: Largest palind ...

  5. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  6. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  7. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  8. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

  9. Project Euler 第一题效率分析

    Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...

随机推荐

  1. [DevExpress]ChartControl之柱状图示例

    关键代码: using System; using System.Data; using System.Windows.Forms; using CSharpUtilHelpV2; using Dev ...

  2. 解决Discuz“完善用户资料”任务不能完成的问题

    最近用 Discuz X3.2 搭建了个论坛,在测试过程中发现"完善用户资料"这个官方自带的任务有个Bug,将所有的资料都填写完成后,任务仍然无法完成,而且没有明确提示有哪些项目没 ...

  3. 无DLL线程注入

    注意要在release方式编译 //线程函数 DWORD WINAPI RemoteThreadProc(LPVOID lpParam) {      PDATA pData = (PDATA)lpP ...

  4. 第29章 项目10:DIY街机游戏

    1.问题 "Self-Defense Against Fresh Fruit":军士长指挥自己的士兵使用自我防御战术对抗以石榴.芒果.青梅和香蕉等新鲜水果入侵者.防御战术包括使用枪 ...

  5. openerp学习笔记 自定义小数精度(小数位数)

    小数位数标识定义: lx_purchase/data/lx_purchase_data.xml <?xml version="1.0" encoding="utf- ...

  6. 全民wifi钓鱼来临----agnes安卓wifi钓鱼神器介绍

    断断续续搞了一些无线的东西,从bt5的aircrack-ng的破无线(没怎么成功过)其实EWSA这个用GPU跑还算不错,可惜了我这显卡也只能每秒2500,到用c118在OsmocomBB基础上进行gs ...

  7. XAML 概述一

    XAML的全称是Extensible Application Markup Language,就是我们所说的可扩展应用程序标记语言.XAML可以应用到许多不同领域,但主要用于构建用户界面. XAML是 ...

  8. ubuntu: 环境搭建

    1.修改更新源    sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak    sudo gedit /etc/apt/sources.li ...

  9. 时序图 Sequence Diagram

    时序图(Sequence Diagram)是显示对象之间交互的图,这些对象是按时间顺序排列的. 时序图中显示的是参与交互的对象及其对象之间消息交互的顺序. 下面这张图介绍了时序图的基本内容: 下面这张 ...

  10. C语言标准库函数strcpy与strcmp的简单实现

    //C语言标准库函数strcpy的一种简单实现. //返回值:目标串的地址. //对于出现异常的情况ANSI-C99标准并未定义,故由实现者决定返回值,通常为NULL. //参数:des为目标字符串, ...