Project Euler 91:Right triangles with integer coordinates 格点直角三角形
Right triangles with integer coordinates
The points P (x1, y1) and Q (x2, y2) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.

There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is,0 ≤ x1, y1, x2, y2 ≤ 2.

Given that 0 ≤ x1, y1, x2, y2 ≤ 50, how many right triangles can be formed?
点P(x1, y1)和点Q(x2, y2)都是格点,并与原点O(0,0)构成ΔOPQ。

当点P和点Q的所有坐标都在0到2之间,也就是说0 ≤ x1, y1, x2, y2 ≤ 2时,恰好能构造出14个直角三角形。

如果0 ≤ x1, y1, x2, y2 ≤ 50,能构造出多少个直角三角形?
解题
先网上找到的答案,然后看题解中,前面几题给出了暴露的方法,遍历所有的点 ,判断是否是直角三角形就好了,最后的结果要除以2,,因为两个点是可以互换的。
Java
package Level3;
public class PE091{
static void run(){
int N = 50;
int count = 0;
// 第一个顶点
for(int x1 = 0; x1<=N;x1++){
for(int y1 = 0;y1<=N ;y1++){
if(x1==0 && y1==0) continue;
// 第二个顶点
for(int x2 = 0;x2<=N;x2++){
for(int y2=0;y2<=N;y2++){
if(x2==0&&y2==0 || x1==x2&&y1==y2)
continue;
//判断是否是三角形
double d1 = getDistance(0,0,x1,y1);
double d2 = getDistance(0,0,x2,y2);
double d3 = getDistance(x1,y1,x2,y2);
if(d1+d2==d3|| d1+d3==d2||d2+d3==d1)
count++;
}
}
}
}
System.out.println(count/2);
}
// 14234
// running time=0s71ms
static double getDistance(int x1,int y1,int x2,int y2){
double d1 = (x1-x2)*(x1-x2);
double d2 = (y1-y2)*(y1-y2);
return d1+d2;
}
public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
}
}
上面给出来很好的不用暴力的方法
对于直角在原点的情况:
P Q两点只能在x轴 y轴上,固定一点看另一点,显然有50中可能,然而这一点也有50种可能,共2500种
对于直角在x轴或者y轴的情况:
当P 在x轴上的某点时候,Q的x坐标显然要和P 的一样,PQ都各有50个位置,共2500种
当P 在y轴的时候,也有2500种
对于直角在方格内部的时候:

要使得是直角三角形:OP要垂直PQ
OP的斜率:k = dy/dx (dy/dx是最简分数) 其中P的坐标设为(x,y)
则PQ的斜率是:-dx/dy
如何根据斜率,找到Q的整数点,或者Q点的个数。
当P点的y轴值>Q点的y轴的值时候:
(如上图所示)可以发现:Q1 Q2 把PQ3等分成三份。三个Q点都是整数点。
对斜率为k = dy/dx :可以通过一个dy * dx的方格表示出来,所以,对于P(x,y)点,x每加一个dx y每减一个dy都是一个整数Q点,那么有多少个符合要求的点?只需要看最大能走多少步,
对于PQ的斜率是dx/dy,当P(x,y), 对x而言最大的步数是:(N-x)/dy ,对y而言最大的步数是:y/dx
这样其最小值就是Q的整数点数:MIN((N-x)/dy,y/dx)
当P点的y轴值<Q点的y轴的值时候:
PQ的斜率是:-dx/dy
P(x,y) x向左走的最大步数:x/dy y向上走的最大步数:(N-y)/dx
这样其最小值就是Q的整数点数:MIN(x/dy,(N-y)/dx)
这与上面链接的结果不一样,根据运行结果发现答案是一样的
其实吧 对于P点的坐标可以是在N*N方格中的任意一点,P的坐标是可以对称的,所以可以直接乘以二的。
JAVA
package Level3;
public class PE091{
static void run1(){
int N = 50;
// 直角在原点,直角在x轴 直角在y轴,个数都是N*N
int result =N*N*3;
//下面只需要对直角在方格内部的情况
for(int x = 1;x<= N;x++){
for(int y=1;y<= N;y++){
int fact = gcd(x,y);
result += Math.min(y*fact/x, (N-x)*fact/y);
result += Math.min(x*fact/y, (N-y)*fact/x);
}
}
System.out.println(result);
}
// 14234
// running time=0s78ms
static int gcd(int x,int y){
if(x<y){
int tmp = x;
x = y;
y = tmp;
}
int r = x%y;
while(r!=0){
int tmp =x;
x = y;
y = tmp%x;
r = x%y;
}
return y;
}
static void run(){
int N = 50;
int count = 0;
// 第一个顶点
for(int x1 = 0; x1<=N;x1++){
for(int y1 = 0;y1<=N ;y1++){
if(x1==0 && y1==0) continue;
// 第二个顶点
for(int x2 = 0;x2<=N;x2++){
for(int y2=0;y2<=N;y2++){
if(x2==0&&y2==0 || x1==x2&&y1==y2)
continue;
//判断是否是三角形
double d1 = getDistance(0,0,x1,y1);
double d2 = getDistance(0,0,x2,y2);
double d3 = getDistance(x1,y1,x2,y2);
if(d1+d2==d3|| d1+d3==d2||d2+d3==d1)
count++;
}
}
}
}
System.out.println(count/2);
}
// 14234
// running time=0s71ms
static double getDistance(int x1,int y1,int x2,int y2){
double d1 = (x1-x2)*(x1-x2);
double d2 = (y1-y2)*(y1-y2);
return d1+d2;
}
public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
}
}
Python
# coding=gbk import time as time
from itertools import combinations
def run():
N = 50
count = N*N*3
for x in range(1,N+1):
for y in range(1,N+1):
fact = gcd(x,y)
count += min((N-x)*fact/y,y*fact/x)*2
print count #
# running time= 0.00300002098083 s
def gcd(x,y):
if x<y:
x,y = y,x
while x%y!=0:
tmp = x
x = y
y = tmp%y
return y t0 = time.time()
run()
t1 = time.time()
print "running time=",(t1-t0),"s"
Project Euler 91:Right triangles with integer coordinates 格点直角三角形的更多相关文章
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 032:Project Euler 004:最大的回文积
本题来自 Project Euler 第4题:https://projecteuler.net/problem=4 # Project Euler: Problem 4: Largest palind ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- project euler 169
project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...
- 【Project Euler 8】Largest product in a series
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...
- Project Euler 第一题效率分析
Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...
随机推荐
- nginx配置(解释)
- [大牛翻译系列]Hadoop(18)MapReduce 文件处理:基于压缩的高效存储(一)
5.2 基于压缩的高效存储 (仅包括技术25,和技术26) 数据压缩可以减小数据的大小,节约空间,提高数据传输的效率.在处理文件中,压缩很重要.在处理Hadoop的文件时,更是如此.为了让Hadoop ...
- eclipse,myeclipse svn 和jadclipse 反编译插件 及安装
插件下载链接:http://download.csdn.net/download/mmyzlinyingjie/6456785 myeclipse svn 安装: 把svn解压,然后把这个文件夹放在m ...
- .NET开发Windows Service程序 - Topshelf
在实际项目开发过程中,会经常写一些类似定时检查,应用监控的应用.这类应用在windows平台通常都会写成window service程序. 在百度上搜索一下'c#开发windows service', ...
- nginx服务器绑定域名和设置根目录
首先进入nginx安装目录的配置目录conf,然后执行 vi conf/nginx.conf 打开nginx的配置文件,找到并修改红字部分 server { listen default_server ...
- C# 命名参数【转】
命名参数(Named Arguments)就是说在调用函数时可以通过指定参数名称的方式来调用参数.它最大的好处就是方便调用参数时按调用者的需要来排列顺序,而不必死守函数声明时的顺序(相对于“位置参数” ...
- 通过替换frm文件方式修改表结构
版本:5.6.16 在自己的虚拟环境中,测试创建一个表,表结构如下:mysql> drop table yoon_temp;Query OK, 0 rows affected (0.09 sec ...
- input 标签的监听事件总结
最近在写一个手机端提交表单的项目,里面用了不少input标签,因为项目不太忙,所以,想做的完美点,但是遇到了一些问题,比如:页面中的必填项如果有至少一项为空,提交按钮就是不能提交的状态,所以需要对所有 ...
- Project Settings -> Editor 设置详解
Default Behavior Mode (默认行为模式) 定义项目在导入Assets时的默认导入设置,当设置为3D模式时,Unity假设将导入的文件创建为纹理类型(如:PNG文件):当设置为2D时 ...
- phpcms v9 企业黄页加入企业会员提示“请选择企业库类型!”
很多新进站长选择使用了PHPCMS v9内容管理系统,它强大的功能无疑吸引了很多人,尤其是企业黄页功能更是其中的佼佼者,但是官方发布的版本兼容性比较差,出现会员加入企业会员提示“请选择企业库类型!”, ...