cojs 疯狂的重心 疯狂的机器人 题解报告
疯狂的重心
话说做过幻想乡战略游戏的人应该很容易切掉这道题目吧
我们考虑一棵树如果添加了一个叶子,那么其重心最多向叶子方向移动1的距离
而是否移动我们只需要记录子树中有多少个点就可以判断啦
也就是说这个叶子对于时间复杂度的贡献是1
那么我们考虑每次在x-y上添加一条边,等于将x所在的树和y所在的树合并
这一步我们可以采用启发式合并,每次把小的向大的里插
这样暴力合并的时间复杂度是O(nlogn)
也就等价于我们最多插入单个节点O(nlogn)
那么对于重心的计算显然也是O(nlogn)的
那么现在的瓶颈就是如何动态的维护子树中有多少个节点
对于这一步我们可以采用LCT维护,每次暴力合并之后链修改即可
在合并之后再暴力移动重心就可以辣,细节比较多也比较烦
不过主体都是暴力QAQ
疯狂的机器人
做了做BC上周的题目,有个裸的默慈金数
可以直接O(n)递推得到,做完之后一直想着能不能用FFT搞一搞
然后就把题目变了个形,但是并不知道有没有大神有O(n)递推的神做法
首先我们考虑操作中哪些操作走,设走的操作有i个
再考虑走的操作中哪些是向上走,设向上走的操作有j个
我们很容易发现当只能向右和向左走时,这个题实际上是合法进出栈序列,也就是卡特兰数
只能向上和向下走的时候也同理
很容易得到ans=sigma(C(n,i) *sigma( C(i,j) * f(j) * f(i-j)))
其中f(i)我们定义为当i为奇数时,f(i)=0
当i为偶数时,f(i)=catalan(i/2)
令g(i)=sigma(C(i,j) *f(j) *f(i-j))
不难发现这是个卷积形式,直接NTT即可
之后ans=sigma(C(n,i) *g(i) )
我们这一步直接枚举i计算其实就可以了
不过实际上这还是个卷积形式,依然可以NTT
cojs 疯狂的重心 疯狂的机器人 题解报告的更多相关文章
- cojs 疯狂的粉刷匠 疯狂的斐波那契 题解报告
疯狂的斐波那契 学习了一些奇怪的东西之后出的题目 最外层要模p是显然的,然而内层并不能模p 那么模什么呢,显然是模斐波那契的循环节 那么我们可以一层层的求出每层的斐波那契循环节 之后在从内向外用矩阵乘 ...
- cojs 强连通图计数1-2 题解报告
OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...
- cojs 二分图计数问题1-3 题解报告
OwO 良心的FFT练手题,包含了所有的多项式基本运算呢 其中一部分解法参考了myy的uoj的blog 二分图计数 1: 实际是求所有图的二分图染色方案和 我们不妨枚举这个图中有多少个黑点 在n个点中 ...
- 2015浙江财经大学ACM有奖周赛(一) 题解报告
2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...
- 题解报告:hdu 1398 Square Coins(母函数或dp)
Problem Description People in Silverland use square coins. Not only they have square shapes but also ...
- 题解报告:hdu 2069 Coin Change(暴力orDP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...
- 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)
Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...
- CF Educational Round 78 (Div2)题解报告A~E
CF Educational Round 78 (Div2)题解报告A~E A:Two Rival Students 依题意模拟即可 #include<bits/stdc++.h> us ...
- CF1169(div2)题解报告
CF1169(div2)题解报告 A 不管 B 首先可以证明,如果存在解 其中必定有一个数的出现次数大于等于\(\frac{m}{2}\) 暴力枚举所有出现次数大于等于$\frac{m}{2} $的数 ...
随机推荐
- 读取iis日志到sql server
using Fasterflect; using System; using System.Collections.Generic; using System.Data.SqlClient; usin ...
- bug汇总 (EF,Mvc,Wcf)
此博客用于在开发过程总bug及其解决方案的记录. 1. 异常信息: ObjectStateManager 中已存在具有同一键的对象.ObjectStateManager 无法跟踪具有相同键的多个对象 ...
- linux服务器报No space left on device错误的解决过程记录
起因 今天在本地提交了点代码,但到服务器上git pull的时候提示No space left on device,第一反应是猜想可能硬盘满了(很有可能是log导致的),不过想想又觉得不太可能,这台服 ...
- Spark菜鸟学习营Day3 RDD编程进阶
Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写 ...
- Ubuntu下编程环境GNU安装
ubuntu下C编程 环境搭建 其实,linux下写C也是很容易的.IDE的话用 eclipse 集成 CDT 模块就行了.当然这属于重量级的了,就如同VC++之于windows一样.那有没有像T ...
- JS模板Handlebars的使用和有效组织
应用背景 我们在做项目时,为了使页面模块高度复用,使用页面模板是必须的,我想大家通常可能会新建MVC的项目,然后在页面中使用Razor引擎,新建Helper模板类,前后台代码的混写,简洁高效,一切 ...
- EF中使用Select new 方法中字段值替换的问题
前提需要替换查询得到的List当中的某个字段的值,替换规则有一个mapping关系 尝试代码 有问题 无法获取任何数据 /// <summary> /// 获取Treegrid的List ...
- Android之EditText
EditText 属性介绍: maxLength:设置最大输入字符数. hint:设置空白提示文字. textColorHint:设置空白提示文字的颜色. enabled:设置是否可编辑(可以获得焦点 ...
- android实现可拖动按钮
功能:在Android中实现可拖动按钮,同时实现按钮的点击功能 相关问题: 按钮拖动的界限限定. 按钮单击和拖动之间的冲突. 在界面未显示之前,获得View的高/宽. 问题描述: 如果不为按钮的拖动范 ...
- Spring中@Transactional事务回滚实例及源码
一.使用场景举例 在了解@Transactional怎么用之前我们必须要先知道@Transactional有什么用.下面举个栗子:比如一个部门里面有很多成员,这两者分别保存在部门表和成员表里面,在删除 ...