一 、Motivation

对于做图像处理的人来说,Harris角点检测肯定听过,1988年发表的文章“A combined corner and edge detector”描述了这种角点检测方法,这篇论文朴实无华,对于图像处理入门来说,非常值得读一读。

Harris角点检测的提出是图像匹配问题的需求,在立体视觉(stereo vision)和运动估计(motion estimation)中,常常需要在两个view(立体视觉)或者同一视频的两帧(运动估计)中找到对应的特征(correspondence feature),如下图1.1所示。

                           图 1.1

 

以patch matching 为例,若在两个view中提取出来的patch 如下图1.2,那么匹配两幅图中相似的patch是比较容易的,

                         图 1.2

而如果两个view中提取出来的patch如下图1.3,那么匹配就不那么容易了,

                        图 1.3

为什么呢?因为图1.2中的patch很独特,信息丰富,图1.3 中的patch单独看来毫无特点,极易混淆。我们称图1.2中的特征为“好特征”,图1.3中的特征是”坏特征“。

那么什么是好特征,什么是坏特征?我认为有两个要考虑的:1 稳定,对缩放,视角变换,光线变化等稳定 2.易区分 。

角点就具有这样的特征,角点如何描述,请看图1.4,

                   图1.4

上图具体解释是这样的,给定一个窗口,如果包含角点,那么这个窗口平移(u,v)个单位,不管这个平移是往哪个方向,窗口中像素对应位置的变化都比较大,而如果包含的是一条边缘,在沿着边缘平移窗口时,窗口中像素强度变化基本没有,而垂直于边缘移动时,变化强烈,对于平坦区域,怎么移动都没有多大变化,当然,这里的平移都是小范围平移。

 

二、Mathematics representation

 

数学描述这种强度变化如下图2.1.

 

                              图2.1

可以看到,这个公式表示往各个方向移动时强度变化的累加和,控制w就可以控制平移后强度累加的方式。

然后用一级泰勒展开近似I(x+u,y+v)-I(x,y),并将上图的公式用矩阵的形式表达出来,有:

                             图2.2

最后 E(u,v) 可以表示为:

                        图 2.3

 

注意到此时M是对称矩阵,可以表示为M = Q A QT 的形式 ,A 为对角矩阵,因此,对角中即为M的特征值,因此,一定要M的2个特征值都比较大才能保证E总是很大。

实际计算过程中,用高斯核来表示w(x,y).

Harris 角点检测的过程如下:

                                图2.4

需要注意的是,求微分图像和第三步的W矩阵都是可以调节或者换成其他形式的,W换成高斯核主要是利用了它各项同性的性质。

三、implementation

最终matlab代码(转自网上)实现如下:

% Harris detector

% The code calculates

% the Harris Feature Points(FP) 

% 

% When u execute the code, the test image file opened

% and u have to select by the mouse the region where u

% want to find the Harris points, 

% then the code will print out and display the feature

% points in the selected region.

% You can select the number of FPs by changing the variables 

% max_N & min_N

% A. Ganoun

 

load Imag

 

I =double(frame);

%****************************

imshow(frame);

k = waitforbuttonpress;

point1 = get(gca,'CurrentPoint');  %button down detected

rectregion = rbbox;  %%%return figure units

point2 = get(gca,'CurrentPoint');%%%%button up detected

point1 = point1(1,1:2); %%% extract col/row min and maxs

point2 = point2(1,1:2);

lowerleft = min(point1, point2);

upperright = max(point1, point2); 

ymin = round(lowerleft(1)); %%% arrondissement aux nombrs les plus proches

ymax = round(upperright(1));

xmin = round(lowerleft(2));

xmax = round(upperright(2));

%***********************************

Aj=6;

cmin=xmin-Aj; cmax=xmax+Aj; rmin=ymin-Aj; rmax=ymax+Aj;

min_N=12;max_N=16;

%%%%%%%%%%%%%%Intrest Points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma=2; Thrshold=20; r=6; disp=1;

dx = [-1 0 1; -1 0 1; -1 0 1]; % The Mask 

    dy = dx';

    %%%%%% 

    Ix = conv2(I(cmin:cmax,rmin:rmax), dx, 'same');   

    Iy = conv2(I(cmin:cmax,rmin:rmax), dy, 'same');

    g = fspecial('gaussian',max(1,fix(6*sigma)), sigma); %%%%%% Gaussien Filter

    

    %%%%% 

    Ix2 = conv2(Ix.^2, g, 'same');  

    Iy2 = conv2(Iy.^2, g, 'same');

    Ixy = conv2(Ix.*Iy, g,'same');

    %%%%%%%%%%%%%%

    k = 0.04;

    R11 = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2;

    R11=(1000/max(max(R11)))*R11;

    R=R11;

    ma=max(max(R));

    sze = 2*r+1; 

    MX = ordfilt2(R,sze^2,ones(sze));

    R11 = (R==MX)&(R>Thrshold); 

    count=sum(sum(R11(5:size(R11,1)-5,5:size(R11,2)-5)));

    

    figure;plot(R11);

    loop=0;

    while (((count<min_N)|(count>max_N))&(loop<30))

        if count>max_N

            Thrshold=Thrshold*1.5;

        elseif count < min_N

            Thrshold=Thrshold*0.5;

        end

        

        R11 = (R==MX)&(R>Thrshold); 

        count=sum(sum(R11(5:size(R11,1)-5,5:size(R11,2)-5)));

        loop=loop+1;

    end

    

    

    R=R*0;

    R(5:size(R11,1)-5,5:size(R11,2)-5)=R11(5:size(R11,1)-5,5:size(R11,2)-5);

    [r1,c1] = find(R);

    PIP=[r1+cmin,c1+rmin];%% IP 

   

 

   %%%%%%%%%%%%%%%%%%%% Display

   

   Size_PI=size(PIP,1);

   for r=1: Size_PI

   I(PIP(r,1)-2:PIP(r,1)+2,PIP(r,2)-2)=255;

   I(PIP(r,1)-2:PIP(r,1)+2,PIP(r,2)+2)=255;

   I(PIP(r,1)-2,PIP(r,2)-2:PIP(r,2)+2)=255;

   I(PIP(r,1)+2,PIP(r,2)-2:PIP(r,2)+2)=255;

   

   end

   

   imshow(uint8(I))

Harris 角点检测的更多相关文章

  1. Harris角点检测算法优化

    Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上 ...

  2. Harris角点检测

    代码示例一: #include<opencv2/opencv.hpp> using namespace cv; int main(){ Mat src = imread(); imshow ...

  3. Harris角点检测算原理

    主要参考了:http://blog.csdn.net/yudingjun0611/article/details/7991601  Harris角点检测算子 本文将该文拷贝了过来,并做了一些数学方面的 ...

  4. Harris角点检测原理分析

    看到一篇从数学意义上讲解Harris角点检测很透彻的文章,转载自:http://blog.csdn.net/newthinker_wei/article/details/45603583 主要参考了: ...

  5. cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测

    参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...

  6. Opencv学习笔记------Harris角点检测

    image算法测试iteratoralgorithmfeatures 原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/73 ...

  7. harris角点检测的简要总结

    目录 1. 概述相关 2. 原理详解 1) 算法思想 2) 数学模型 3) 优化推导 3. 具体实现 1) 详细步骤 2) 最终实现 4. 参考文献 1. 概述相关 harris角点检测是一种特征提取 ...

  8. OpenCV-Python:Harris角点检测与Shi-Tomasi角点检测

    一.Harris角点检测 原理: 角点特性:向任何方向移动变换都很大. Chris_Harris 和 Mike_Stephens 早在 1988 年的文章<A CombinedCorner an ...

  9. 第十一节、Harris角点检测原理(附源码)

    OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...

随机推荐

  1. Hibernate关系级别注解

    最近在学习Hibernate的相关知识,这一站学习的是Hibernate的注解相关的操作和知识.在这里标注以下为以后查阅和需要帮助的朋友提供便利. 一. 开发环境的搭建: 1. 需要的jar包配置: ...

  2. Tomcat多次部署

    http://blog.csdn.net/knityster/article/details/6300804

  3. IText 生成横向的doc文档

    IText生成doc文档需要三个包:iTextAsian.jar,iText-rtf-2.1.4.jar,iText-2.1.4.jar 亲测无误,代码如下: import com.lowagie.t ...

  4. Android Spinner(级联 天气预报)

    activity_spinner.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayo ...

  5. window下编译ffmpeg 比较简单

    网上关于编译ffmpeg的帖子很多,我也尝试了很多次,但是很多都过不了,一部分原因是版本问题,还有就是有的路劲没说的太明白导致的,经过一天的摸索,最终编译好了,下面把编译方式写下来,希望对看到帖子的人 ...

  6. iOS开发之集成ijkplayer视频直播

    ijkplayer 是一款做视频直播的框架, 基于ffmpeg, 支持 Android 和 iOS, 网上也有很多集成说明, 但是个人觉得还是不够详细, 在这里详细的讲一下在 iOS 中如何集成ijk ...

  7. Android:实现无标题的两种方法

    实现无标题的两种方法:配置xml文件和编写代码设置 1.在AndroidManifest.xml文件中进行配置 实现全屏效果: android:theme="@android:style/T ...

  8. RedMine项目管理系统邮件推送设置(Windows环境)

    RedMine项目管理系统有邮箱推送功能,当Bug,安全漏洞等内容被修改.解决.评论的时候,系统会通过邮件 及时的通知你的团队和客户.邮件通知的环节.形式.时间.接受人均可定制,功能十分实用. 下面是 ...

  9. SQL数据库还原时备份集中的数据库备份与现有的数据库不同的解决办法

    SQL Server 2005数据库还原出错错误具体信息为:备份集中的数据库备份与现有的A数据库不同 具体操作如下:第一次:新建了数据库A,数据库文件放在E:\DB\A目录下,选中该数据库右键-任务- ...

  10. dup和dup2函数以及管道的实现

    疑问:管道应该不是这样实现的,因为这要求修改程序的代码 dup和dup2也是两个非常有用的调用,它们的作用都是用来复制一个文件的描述符.它们经常用来重定向进程的stdin.stdout和stderr. ...