%%%。设f(x)=a0+a1x+a2x^2+ … + anx^n.求f(x)=0的x。

数据范围很大,高精度只能骗分。

运用类似hash的思想。 如果这个等式mod p 还成立(p为质数)那它很可能就是成立。

多取几个质数(大质数更优)就可以几乎确定了。(70分)

100分时m很大,不能都算出来。

仔细分析,如果在模p时f(x)!=0,则f(x+p)肯定也不是解。这样一来只需枚举从1到p的数即可确定所有的数是否能为解。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 100000 + 10;
const int maxm = 1000000 + 10; const long long p[]={11261,19997,22877,21893,14843,17851};
long long a[110][10];
long long f[maxn][10];
int n,m,cnt;
char s[maxn];
bool able[maxm];
int res[maxm]; long long calc (long long i,int j) {
long long sum=a[0][j]; long long t=1; i=i%p[j];
for(int k=1;k<=n;k++) {
t=t*i%p[j];
sum=(sum+a[k][j]*t)%p[j];
}
return sum;
} int main() {
bool sgn;
scanf("%d%d",&n,&m);
for(int i=0,l;i<=n;i++) {
scanf("%s",s);
l=strlen(s);
sgn=0; for(int j=0;j<l;j++) {
if(s[j]=='-') {
sgn=1;
continue;
}
for(int k=0;k<6;k++) a[i][k]=(a[i][k]*10+s[j]-'0')%p[k];
} if(sgn)
for(int k=0;k<6;k++) a[i][k]=p[k]-a[i][k];
}
for(int j=0;j<6;j++)
for(int i=1;i<=p[j];i++)
f[i][j]=calc(i,j); memset(able,1,sizeof(able)); for(int j=0;j<6;j++)
for(int i=1;i<=m;i++)
if(f[i%p[j]][j] != 0) able[i]=0;
for(int i=1;i<=m;i++) if(able[i]) res[++cnt]=i; printf("%d\n",cnt);
for(int i=1;i<=cnt;i++) printf("%d\n",res[i]);
return 0;
}

codevs3732 解方程的更多相关文章

  1. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  2. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  3. HDU 4793 Collision --解方程

    题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...

  4. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  7. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  8. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  9. python 解方程

    [怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...

随机推荐

  1. 就谈个py 的装饰器 decorator

    很早很早就知道有这么个 装饰器的东西,叫的非常神秘. 包括c#  和 java 中都有这个东西, c#中叫做attribut 特性,java中叫做Annotation 注解,在偷偷学习c#教程的时候, ...

  2. 1080. Graduate Admission (30)

    时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It is said that in 2013, there w ...

  3. 4、WPF应用程序的启动

    启动第一步: 启动第二步 启动第三步:

  4. 【BZOJ2049】 [Sdoi2008]Cave 洞穴勘测

    Description 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好 ...

  5. python学习笔记9(对文件的操作)

    一.文件对象 我理解的文件对象就是一个接口,通过这个接口对文件进行相关操作. 二.相关函数 [1].内建函数:open() 提供了初始化输入/输出(I/O)操作的通用接口,成功打开一个文件后会返回一个 ...

  6. 自己实现的android树控件,android TreeView

    1.开发原因 在项目中经常需要一个需要一个树状框架,这是非常常见的控件.不过可能是谷歌考虑到android是手机系统,界面宽度有限, 所以只提供了只有二级的ExpandableListView.虽然这 ...

  7. Extjs布局——layout: 'card'

    先看下此布局的特性: 下面演示一个使用layout: 'card'布局的示例(从API copy过来的)——导航面板(注:导航面板切换下一个或上一个面板实际是导航面板的布局--layout调用指定的方 ...

  8. [转载]Unity3D 游戏引擎之使用C#语言建立本地数据库(SQLITE)

    以前在开发中一直使用IOS源生的数据库,通过传递消息的形式在与Unity3D中进行交互.本文我在详细说说如何使用C#语言来在MAC 操作系统下创建Unity本地数据库,我是C#控哇咔咔--- 首先你需 ...

  9. Win2003+iis6部署MVC4网站的方法

    1.服务器上安装SP2 和 IIS6 2.安装.Net Framework3.5 SP1(完整安装包,包含2.0 2.0SP1,237MB那个安装包) 3.安装.Net Framework4.0 4. ...

  10. 【技术贴】webservice cxf2 客户端动态调用报错No operation was found with the name

    No operation was found with the name xxx 出错原因是因为发布服务的接口所在包路径和此接口实现类包路径不一致,比如你的服务接口可能放在了包com.x.interF ...