POJ 3074 Sudoku (Dancing Links)
传送门:http://poj.org/problem?id=3074
DLX 数独的9*9的模板题。
具体建模详见下面这篇论文。其中9*9的数独怎么转化到精确覆盖问题,以及相关矩阵行列的定义都在下文中,描述的十分清晰
http://wenku.baidu.com/view/4ab7bd00a6c30c2259019eae.html
有关Dancing Links的英文论文详见下面链接
http://wenku.baidu.com/view/60eb28ded15abe23482f4d77.html
中文的:
http://wenku.baidu.com/view/d8f13dc45fbfc77da269b126.html
AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<algorithm> using namespace std;
// 列:(行+列+块)*9种可能+9*9个格子
// 行: 9*9*9 表示第i行第j列填k
const int MAXN=(9+9+9)*9+9*9+9*9*9*9*9*4+10;
#define INF 0xFFFFFF
int size;
int head,sz;
int U[MAXN],D[MAXN],L[MAXN],R[MAXN];
int H[MAXN],ROW[MAXN],C[MAXN],S[MAXN],O[MAXN]; void remove(int c)
{
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[C[j]];
}
}
} void resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
{
for(int j=L[i];j!=i;j=L[j])
{
++S[C[j]];
U[D[j]]=j;
D[U[j]]=j;
}
}
L[R[c]]=c;
R[L[c]]=c;
} bool dfs(int k)
{
if(R[head]==head)
{
sort(O,O+9*9);
int p=0;
for(int i=0;i<9;i++)
{
for(int j=0;j<9;j++)
{
int num=O[p++];
//cout<<num<<endl;
num=num-(i*9+j)*9;
printf("%d",num);
}
}
printf("\n");
return true;
}
int s=INF,c;
for (int t=R[head];t!=head;t=R[t])
{
if (S[t]<s)
{
s=S[t];
c=t;
}
}
remove(c);
for(int i=D[c];i!=c;i=D[i])
{
O[k]=ROW[i];
for(int j=R[i];j!=i;j=R[j])
remove(C[j]);
if(dfs(k+1))
return true;
for(int j=L[i];j!=i;j=L[j])
resume(C[j]);
}
resume(c);
return false;
} void initDL(int n)
{
head=0;
for(int i=0;i<=n;i++)
{
U[i]=i;D[i]=i;
L[i]=i-1;R[i]=i+1;
S[i]=0;
}
R[n]=0;L[0]=n;S[0]=INF+1;
sz=n+1;
memset(H,0,sizeof(H));
} void insert(int i, int j)
{
if(H[i])
{
L[sz]=L[H[i]];
R[sz]=H[i];
L[R[sz]]=sz;
R[L[sz]]=sz;
}
else
{
L[sz]=sz;
R[sz]=sz;
H[i]=sz;
}
U[sz]=U[j];
D[sz]=j;
U[D[sz]]=sz;
D[U[sz]]=sz;
C[sz]=j;
ROW[sz]=i;
++S[j];
++sz;
} char str[200]; void build()
{
int p=0;
initDL(9*9*4);
for(int i=0;i<9;i++)
for(int j=1;j<=9;j++,p++)
{
int base=(i*9+j-1)*9;
if(str[p]=='.')
{
for(int k=1;k<=9;k++)
{
int r;
r=base+k;
//第i行有数字k
insert(r,i*9+k);
//第j列有数字k
insert(r,9*9+(j-1)*9+k);
//第k块有数字k
int block=(j-1)/3*3+i/3;
insert(r,9*9*2+block*9+k);
//第i行j列有一个数字(限制一个格子只填一个数)
insert(r,9*9*3+i*9+j);
}
}
else
{
int k=str[p]-'0';
int r=base+k;
//第i行有数字k
insert(r,i*9+k);
//第j列有数字k
insert(r,9*9+(j-1)*9+k);
//第k块有数字k
int block=(j-1)/3*3+i/3;
insert(r,9*9*2+block*9+k);
//第i行j列有一个数字(限制一个格子只填一个数)
insert(r,9*9*3+i*9+j);
}
}
} int main()
{
size=9; //9*9数独
while(~scanf("%s",str))
{
if(strcmp(str,"end")==0)
break;
build();
dfs(0);
}
return 0;
}
POJ 3074 Sudoku (Dancing Links)的更多相关文章
- 算法实践——舞蹈链(Dancing Links)算法求解数独
在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancin ...
- 转载 - 算法实践——舞蹈链(Dancing Links)算法求解数独
出处:http://www.cnblogs.com/grenet/p/3163550.html 在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dan ...
- 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...
- [转] 舞蹈链(Dancing Links)——求解精确覆盖问题
转载自:http://www.cnblogs.com/grenet/p/3145800.html 精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个 ...
- 算法帖——用舞蹈链算法(Dancing Links)求解俄罗斯方块覆盖问题
问题的提出:如下图,用13块俄罗斯方块覆盖8*8的正方形.如何用计算机求解? 解决这类问题的方法不一而足,然而核心思想都是穷举法,不同的方法仅仅是对穷举法进行了优化 用13块不同形状的俄罗斯方块(每个 ...
- 【POJ3740】Easy Finding DLX(Dancing Links)精确覆盖问题
题意:多组数据,每组数据给你几行数,要求选出当中几行.使得每一列都有且仅有一个1.询问是可不可行,或者说能不能找出来. 题解:1.暴搜.2.DLX(Dancing links). 本文写的是DLX. ...
- 转载 - 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
出处:http://www.cnblogs.com/grenet/p/3145800.html 精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 ...
- 【POJ3074】Sudoku DLX(Dancing Links)
数独就要DLX,不然不乐意. 数独的DLX构造:9*9个点每一个点有9种选择,这构成了DLX的729行,每行.列.阵有限制,均为9行(/列/阵),然后每行(/列/阵)都有九种数的情况.于是就有了3*9 ...
- ZOJ 3209 Treasure Map (Dancing Links)
Treasure Map Time Limit: 2 Seconds Memory Limit: 32768 KB Your boss once had got many copies of ...
随机推荐
- IPy的使用
IPy - class and tools for handling of IPv4 and IPv6 addresses and networks. Website: https://github. ...
- HDU 5379 Mahjong tree
题意:在一棵有n个节点的树上放编号从1到n的麻将,要求每个点的儿子节点之间的编号连续,每棵子树内的编号连续. 解法:手推一组样例之后就可以得到如下结论然后从根节点一边讨论一边搜就好了. 当一个节点只有 ...
- [转] AE中如何由IFeature 如何获取所对应的FeatureClass
转载的原文 AE中如何由IFeature 如何获取所对应的FeatureClass 先获取FeatureClass,然后遍历Map中所有的FeatureLayer,然后比较 FeatureClas ...
- 《Python 学习手册4th》 第十八章 参数
''' 时间: 9月5日 - 9月30日 要求: 1. 书本内容总结归纳,整理在博客园笔记上传 2. 完成所有课后习题 注:“#” 后加的是备注内容 (每天看42页内容,可以保证月底看完此书) “重点 ...
- Webservice 调用方式整理
前一段时间搞webservice,简单的记录了一下几种常用的调用方式,供大家参考. 第一种:Java proxy 1).用过eclipse的创建web service client来完成 2).在ec ...
- Intellij IDEA,WebStorm-keymap(转)
1. ctrl + shift + n: 打开工程中的文件2. ctrl + j: 输出模板3. ctrl + b: 跳到变量申明处4. ctrl + alt + T: 围绕包裹代码(包括zencod ...
- MSI/MSI-X
MSI PCI2.2规范引进了MSI作为传统的基于线的中断的替代方案.MSI允许设备通过向一个特定的地址写入一个特定的值来允许中断,而不是使用一个专有的引脚来触发中断.注意消息的目的地址和消息数据被当 ...
- elementary os下anaconda的spyder.desktop文件
[Desktop Entry] Version=1.0 Type=Application Name=Spyder GenericName=Spyder Comment=Scientific PYtho ...
- 时间都去哪了?——安卓GTD工具
GTD是英文Getting Things Done的缩写,是一种行为管理的方法,也是David Allen写的一本书的书名. GTD的主要原则在于一个人需要通过记录的方式把头脑中的各种任务移出来.通过 ...
- 现代程序设计 homework-04
题目要求: 第四次作业,构造一个方阵将指定单词填入 stage 1:每个单词只出现1次,且八个方向各至少有两个单词 stage 2:矩阵长宽相等 stage 3:方阵的四个角都要参与单词的构建 算法思 ...