POJ 3522 Slim Span 最小差值生成树
Slim Span
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://poj.org/problem?id=3522
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
HINT
题意
给你一个无向图,然后让你找到一个生成树,使得这棵树最大边减去最小边的差值最小
题解:
跑kruskal,我们枚举最小边之后,我们就可以跑kruskal
由于kruskal是排序之后,贪心去拿的,那么最后加入的边一定是最大边
然后我们注意更新答案就好了
代码
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; #define maxn 100005
struct edge
{
int u,v,w;
};
edge E[maxn];
int fa[maxn];
int n,m;
int ans;
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int fi(int x)
{
if(x!=fa[x])fa[x]=fi(fa[x]);
return fa[x];
}
int uni(int x,int y)
{
int p = fi(x),q = fi(y);
if(p==q)return ;
fa[q] = p;
return ;
}
void solve()
{
ans = ;
sort(E+,E++m,cmp);
int flag = ;
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
fa[j]=j;
int low = E[i].w,high = E[i].w;
int cnt = ;
uni(E[i].u,E[i].v);
cnt++;
for(int j=i+;j<=m;j++)
{
if(uni(E[j].u,E[j].v))
{
cnt++;
high = max(high,E[j].w);
}
}
if(cnt == n-)
{
flag = ;
ans = min(ans,high - low);
}
}
if(flag == )
ans = -;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==)break;
memset(E,,sizeof(E));
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&E[i].u,&E[i].v,&E[i].w);
solve();
printf("%d\n",ans);
}
}
POJ 3522 Slim Span 最小差值生成树的更多相关文章
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
随机推荐
- linux中waitpid及wait的用法
wait(等待子进程中断或结束) 表头文件 #include<sys/types.h> #include<sys/wait.h> 定义函数 pid_t wa ...
- Oracle 存储过程的创建,及触发器调用存储过程
一.创建存储过程 1.存储过程写法 create or replace procedure HVM_BYQ_TJ --变压器统计信息--->入库 (id in number) as begin ...
- java web 学习六(servlet开发2)
一.ServletConfig讲解 1.1.配置Servlet初始化参数 在Servlet的配置文件web.xml中,可以使用一个或多个<init-param>标签为servlet配置一些 ...
- XA事务处理
XA接口详解 X/Open XA接口是双向的系统接口,在事务管理器(Transaction Manager)以及一个或多个资源管理器(Resource Manager)之间形成通信桥梁.事务管理器控制 ...
- android模块化app开发笔记-2插件间布局文件共享
android编程时布局文件,图片资源等都是放在同一个文件夹下,这样照成一个问题就是我们想重用UI布局文件和图片时就还需要其分离这些资料,相信大部分android程序员都遇到过这样的问题,其痛苦程度不 ...
- duilib combo控件,当鼠标滚动时下拉列表自动关闭的bug的修复
转载请说明出处,谢谢~~ 群里有朋友提到了使用Combo控件时,当下拉列表出现,此时鼠标滚轮滚动,下拉列表就自动消失了.我看了一下源码,这个bug的修复很简单. CComboUI控件被单击时创建CCo ...
- 总结:ADO.NET在开发中的部分使用方法和技巧
如何使用 SqlDataAdapter 来检索多个行 以下代码阐明了如何使用 SqlDataAdapter 对象发出可生成 DataSet 或 DataTable 的命令.它从 SQL Server ...
- g++安装 Gnome/Gtk+开发库 的 环境安装(安装widgets的必要条件)
sudo yum install gcc-c++ 我在更新软件源后,看了看最新版的GTK开发版是3.0的. 所以,基本可以照搬. sudo yum -t install gtk3 sudo yum - ...
- python中struct模块及packet和unpacket
转自:http://www.cnblogs.com/gala/archive/2011/09/22/2184801.html 我们知道python只定义了6种数据类型,字符串,整数,浮点数,列表,元组 ...
- CSS定位(CSS定位概述、相对定位、绝对定位、浮动)
CSS 定位属性 CSS 定位属性允许你对元素进行定位. 属性 描述 position 把元素放置到一个静态的.相对的.绝对的.或固定的位置中. top 定义了一个定位元素的上外边距边界与其包含块上边 ...