POJ 3522 Slim Span 最小差值生成树
Slim Span
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://poj.org/problem?id=3522
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
HINT
题意
给你一个无向图,然后让你找到一个生成树,使得这棵树最大边减去最小边的差值最小
题解:
跑kruskal,我们枚举最小边之后,我们就可以跑kruskal
由于kruskal是排序之后,贪心去拿的,那么最后加入的边一定是最大边
然后我们注意更新答案就好了
代码
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; #define maxn 100005
struct edge
{
int u,v,w;
};
edge E[maxn];
int fa[maxn];
int n,m;
int ans;
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int fi(int x)
{
if(x!=fa[x])fa[x]=fi(fa[x]);
return fa[x];
}
int uni(int x,int y)
{
int p = fi(x),q = fi(y);
if(p==q)return ;
fa[q] = p;
return ;
}
void solve()
{
ans = ;
sort(E+,E++m,cmp);
int flag = ;
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
fa[j]=j;
int low = E[i].w,high = E[i].w;
int cnt = ;
uni(E[i].u,E[i].v);
cnt++;
for(int j=i+;j<=m;j++)
{
if(uni(E[j].u,E[j].v))
{
cnt++;
high = max(high,E[j].w);
}
}
if(cnt == n-)
{
flag = ;
ans = min(ans,high - low);
}
}
if(flag == )
ans = -;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==)break;
memset(E,,sizeof(E));
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&E[i].u,&E[i].v,&E[i].w);
solve();
printf("%d\n",ans);
}
}
POJ 3522 Slim Span 最小差值生成树的更多相关文章
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
随机推荐
- 转载RabbitMQ入门(3)--发布和订阅
发布和订阅 (使用java 客户端) 在先前的指南中,我们创建了一个工作队列.这工作队列后面的假想是每一个任务都被准确的传递给工作者.在这部分我们将会做一些完全不同的事情–我们将一个消息传递给多个消费 ...
- 【转】Github轻松上手1-Git的工作原理与设置
转自:http://blog.sina.com.cn/s/blog_4b55f6860100zzgp.html 作为一个程序猿,如果没有接触过stack overflow和Github,就如同在江湖中 ...
- android学习—— context 和 getApplicationContext()
一直看到好多应用里面,随手使用getApplicationContext(),不想说也不乐意说,今天转载一篇文章区分两者的区别: 在android中常常会遇到与context有关的内容 浅论一下con ...
- 省市区(县)三级联动代码(js 数据源)
ylbtech-JavaScript-Utility:省市区(县)三级联动代码(js 数据源) 省市区(县)三级联动代码(js 数据源) 1.A,源代码(Source Code)返回顶部 1.A.1, ...
- DevExpress控件使用小结 z
.TextEditor(barEditItem)取文本 string editValue = barEditItem1.EditValue.ToString(); //错误,返回null string ...
- SQL SERVER 实现分组合并实现列数据拼接
需求场景: SQL SERVER 中组织的数据结构是一个层级关系,现在需要抓出每个组织节点以上的全部组织信息,数据示例如下: ADOrg_ID--------------ParentID------- ...
- HTMLayout使用心得
1.关闭按钮 采用CSS!提供的behavior实现窗口关闭功能,不需要在C++代码中处理关闭事件 div { behavior: sys-ctl; -sys-ctl-pos: c ...
- Linux--使用expect进行自动交互
在linux下进行一些操作时,有时需要与机器进行一些交互操作,比如切换账号时输入账号密码,传输文件时输入账号密码登陆远程机器等,但有时候这些动作需要在shell脚本中进行,这个时候就可以使用expec ...
- STM32 TIM重映射
复用功能 没有重映射 部分重映射 完全重映射 TIM3_CH1 PA6 PB4 PC6 CH2 PA7 PB5 PC7 CH3 PB0 PB0 PC8 CH4 PB1 PB1 PC9 /**重映射 t ...
- 判断线段和直线相交 POJ 3304
// 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...