POJ 3522 Slim Span 最小差值生成树
Slim Span
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://poj.org/problem?id=3522
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
HINT
题意
给你一个无向图,然后让你找到一个生成树,使得这棵树最大边减去最小边的差值最小
题解:
跑kruskal,我们枚举最小边之后,我们就可以跑kruskal
由于kruskal是排序之后,贪心去拿的,那么最后加入的边一定是最大边
然后我们注意更新答案就好了
代码
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; #define maxn 100005
struct edge
{
int u,v,w;
};
edge E[maxn];
int fa[maxn];
int n,m;
int ans;
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int fi(int x)
{
if(x!=fa[x])fa[x]=fi(fa[x]);
return fa[x];
}
int uni(int x,int y)
{
int p = fi(x),q = fi(y);
if(p==q)return ;
fa[q] = p;
return ;
}
void solve()
{
ans = ;
sort(E+,E++m,cmp);
int flag = ;
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
fa[j]=j;
int low = E[i].w,high = E[i].w;
int cnt = ;
uni(E[i].u,E[i].v);
cnt++;
for(int j=i+;j<=m;j++)
{
if(uni(E[j].u,E[j].v))
{
cnt++;
high = max(high,E[j].w);
}
}
if(cnt == n-)
{
flag = ;
ans = min(ans,high - low);
}
}
if(flag == )
ans = -;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==)break;
memset(E,,sizeof(E));
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&E[i].u,&E[i].v,&E[i].w);
solve();
printf("%d\n",ans);
}
}
POJ 3522 Slim Span 最小差值生成树的更多相关文章
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
随机推荐
- Android的图片压缩并上传
Android开发中上传图片很常见,一般为了节省流量会进行压缩的操作,本篇记录一下压缩和上传的方法. 图片压缩的方法 : import java.io.ByteArrayOutputStream; i ...
- 转载RabbitMQ入门(5)--主题
主题(topic) (使用Java客户端) 在先前的指南中我们改进了我们的日志系统.取代使用fanout类型的交易所,那个仅仅有能力实现哑的广播,我们使用一个direct类型的交易所,获得一个可以有选 ...
- Android 使用Instrumentation进行界面的单元测试
如果我们要对一个Activity界面上的一个按钮的点击事件进行单元测试,则可使用ActivityInstrumentationTestCase2类来进行测试. 首先我们定义一个测试类: public ...
- Vijos 1114 FBI树
描述 我们可以把由"0"和"1"组成的字符串分为三类:全"0"串称为B串,全"1"串称为I串,既含"0&quo ...
- acdream 1056 (黑白染色)
题意:给你一些关系,每个关系是两只马的名字,表示这两个马不能在一个分组里,问你能否将这些马分成两组. 黑白染色,相邻的点染不同颜色.bfs搞即可,水题. /* * this code is made ...
- 【LeetCode 221】Maximal Square
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
- jquery的each()函数用法
each()方法能使DOM循环结构简洁,不容易出错.each()函数封装了十分强大的遍历功能,使用也很方便,它可以遍历一维数组.多维数组.DOM, JSON 等等 在javaScript开发过程中使用 ...
- ASP.NET常用加密解密方法
ASP.NET常用加密解密方法 一.MD5加密解密 1.加密 C# 代码 public static string ToMd5(string clearString) ...
- Mahout分步式程序开发 聚类Kmeans(转)
Posted: Oct 14, 2013 Tags: clusterHadoopkmeansMahoutR聚类 Comments: 13 Comments Mahout分步式程序开发 聚类Kmeans ...
- bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...