POJ 2387 Til the Cows Come Home (最短路 dijkstra)
Til the Cows Come Home
题目链接:
http://acm.hust.edu.cn/vjudge/contest/66569#problem/A
Description
Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
Line 1: Two integers: T and N
Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
- Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
题意:
n个点m条边的无向图,求1到n的最短路径.
题解:
裸的最短路题;
以下用朴素dijkstra和优先队列优化的dijkstra两种方法分别实现;
注意:
采用邻接数组来存储图时,必须判断重边(朴素法);
代码:
朴素dijkstra方法:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define mid(a,b) ((a+b)>>1)
#define LL long long
#define maxn 1010
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n,m;
int value[maxn][maxn];
int dis[maxn];
int pre[maxn];
bool vis[maxn];
void dijkstra(int s) {
memset(vis, 0, sizeof(vis));
memset(pre, -1, sizeof(pre));
for(int i=1; i<=n; i++) dis[i] = inf;
dis[s] = 0;
for(int i=1; i<=n; i++) {
int p, mindis = inf;
for(int j=1; j<=n; j++) {
if(!vis[j] && dis[j]<mindis)
mindis = dis[p=j];
}
vis[p] = 1;
for(int j=1; j<=n; j++) {
//if(dis[p]+value[p][j] < dis[j]) dis[j] = dis[p] + value[p][j];
if(dis[j] > dis[p]+value[p][j]) {
dis[j] = dis[p] + value[p][j];
pre[j] = p;
}
}
}
}
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d %d", &m,&n) != EOF)
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
value[i][j] = inf;
while(m--){
int u,v,w; cin>>u>>v>>w;
if(w < value[u][v]) value[u][v] = value[v][u] = w;
}
dijkstra(1);
printf("%d\n", dis[n]);
}
return 0;
}
优先队列优化的dijkstra方法:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define mid(a,b) ((a+b)>>1)
#define LL long long
#define maxn 5010
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n, m;
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>,greater<pii> > q;
bool vis[maxn];
int edges, u[maxn], v[maxn], w[maxn];
int first[maxn], next[maxn];
int dis[maxn];
int pre[maxn];
void add_edge(int s, int t, int val) {
u[edges] = s; v[edges] = t; w[edges] = val;
next[edges] = first[s];
first[s] = edges++;
}
void dijkstra(int s) {
memset(pre, -1, sizeof(pre));
memset(vis, 0, sizeof(vis));
for(int i=1; i<=n; i++) dis[i]=inf; dis[s] = 0;
while(!q.empty()) q.pop();
q.push(make_pair(dis[s], s));
while(!q.empty()) {
pii cur = q.top(); q.pop();
int p = cur.second;
if(vis[p]) continue; vis[p] = 1;
for(int e=first[p]; e!=-1; e=next[e]) if(dis[v[e]] > dis[p]+w[e]){
dis[v[e]] = dis[p] + w[e];
q.push(make_pair(dis[v[e]], v[e]));
pre[v[e]] = p;
}
}
}
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d %d", &m,&n) != EOF)
{
edges = 1;
memset(first, -1, sizeof(first));
for(int i=1; i<=m; i++){
int u,v,w; scanf("%d %d %d", &u,&v,&w);
add_edge(u, v, w);
add_edge(v, u, w);
}
dijkstra(1);
printf("%d\n", dis[n]);
// int cur = n;
// while(1) {
// printf("%d ", cur);
// if(cur == 1) break;
// cur = pre[cur];
// }
}
return 0;
}
POJ 2387 Til the Cows Come Home (最短路 dijkstra)的更多相关文章
- POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)
题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...
- POJ 2387 Til the Cows Come Home(最短路模板)
题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...
- POJ 2387 Til the Cows Come Home --最短路模板题
Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...
- POJ 2387 Til the Cows Come Home (图论,最短路径)
POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...
- POJ.2387 Til the Cows Come Home (SPFA)
POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...
- Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)
Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...
- POJ 2387 Til the Cows Come Home
题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33015 Accepted ...
随机推荐
- Android权限安全(8)ContentProvider基于URI的安全
一.provider可以通过binder得到客户的uid,然后进程权限检查. 二,provider临时权限 场景: Email的内容在provider中提供,Email的客户端可读基其内容,现在一封 ...
- NDK(22)JNI编程如何避免常见缺陷
转自 : http://www.ibm.com/developerworks/cn/java/j-jni/index.html 避免常见缺陷 假设您编写了一些新 JNI 代码,或者继承了别处的某些 J ...
- 在XML里的XSD和DTD以及standalone的使用3----具体使用详解
本人亲自写的一个简单的测试例子 1.xsd定义 <?xml version="1.0" encoding="utf-8"?><xs:schem ...
- Ext2.0之Tabpanel AJAX远程加载多标签页面模式开发技巧
目前开发的方式是采用远程load页面来实现多页面效果,类似于126邮箱多标签页效果.但是比126邮箱的方式更好,因为页面打开后是load到本地的,126似乎还会重新请求.在近期项目该开发方式已经基本成 ...
- HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 函数fsp_try_extend_data_file
扩展表空间 /***********************************************************************//** Tries to extend t ...
- HDU 1686 (KMP模式串出现的次数) Oulipo
题意: 求模式串W在母串T中出现的次数,各个匹配串中允许有重叠的部分. 分析: 一开始想不清楚当一次匹配完成时该怎么办,我还SB地让i回溯到某个位置上去. 后来仔细想想,完全不用,直接让模式串向前滑动 ...
- 让你的 Node.js 应用跑得更快的 10 个技巧(转)
Node.js 受益于它的事件驱动和异步的特征,已经很快了.但是,在现代网络中只是快是不行的.如果你打算用 Node.js 开发你的下一个Web 应用的话,那么你就应该无所不用其极,让你的应用更快,异 ...
- <七>面向对象分析之UML核心元素之包
一:基本概念
- 利用c#反射实现实体类生成以及数据获取与赋值
转:http://hi.baidu.com/xyd21c/item/391da2fc8fb351c10dd1c8b8 原有的实体类成员逐个赋值与获取的方法弊端: 1.每次对实体类属性进行赋值时,都要检 ...