Network of Schools
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9073   Accepted: 3594

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

 
 
 
这题给了一个有向图。
 
需要解决两个问题:
第一是需要给多少个点,才能传遍所有点。
 
第二问是加多少条边,使得整个图变得强连通。
 
使用Tarjan进行缩点,得到一个SCC图、
 
这个图有多少个入度为0的,多少个出度为0的。
 
假设有n个入度为0,m个出度为0
 
那么第一个答案就是n,第二个答案是max(n,m)
 
 
具体证明不解释了,貌似以前做过的题目,有解释。
 
需要注意的是假如只有一个强连通分量,即整个图是连通的,那么第一个答案是1,第二个答案是0
 
 
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std; const int MAXN = ;
const int MAXM = *; struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
int Index,top;
int scc;
bool Instack[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
}
void Tarjan(int u)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(!DFN[v])
{
Tarjan(v);
if(Low[u] > Low[v])
Low[u] = Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
scc++;
do
{
v = Stack[--top];
Belong[v] = scc;
Instack[v] = false;
}
while( v!= u);
}
}
int in[MAXN],out[MAXN];
void solve(int N)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
Index = scc = top = ;
for(int i = ;i <= N;i++)
if(!DFN[i])
Tarjan(i);
if(scc == )
{
printf("1\n0\n");
return;
}
for(int i = ;i <= scc;i++)
in[i] = out[i] = ;
for(int u = ;u <= N;u++)
{
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(Belong[u] != Belong[v])
{
in[Belong[v]]++;
out[Belong[u]]++;
}
}
}
int ans1=,ans2=;
for(int i = ;i <= scc;i++)
{
if(in[i]==)ans1++;
if(out[i]==)ans2++;
}
printf("%d\n%d\n",ans1,max(ans1,ans2)); }
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
int main()
{
int n;
int v;
while(scanf("%d",&n) == )
{
init();
for(int i = ;i <= n;i++)
{
while(scanf("%d",&v)== && v)
{
addedge(i,v);
}
}
solve(n);
}
return ;
}
 
 
 
 
 
 
 
 

POJ 1236 Network of Schools (有向图的强连通分量)的更多相关文章

  1. POJ 1236 Network of Schools 有向图强连通分量

    参考这篇博客: http://blog.csdn.net/ascii991/article/details/7466278 #include <stdio.h> #include < ...

  2. 【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点

    题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u ...

  3. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  4. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  5. Poj 1236 Network of Schools (Tarjan)

    题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...

  6. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  8. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  9. POJ 1236 Network of Schools(tarjan算法 + LCA)

    这个题目网上有很多答案,代码也很像,不排除我的.大家的思路应该都是taijan求出割边,然后找两个点的LCA(最近公共祖先),这两个点和LCA以及其他点构成了一个环,我们判断这个环上的割边有几条,我们 ...

随机推荐

  1. Ubuntu 安装mod_python配置Apache2

    在Ubuntu上搭建Python运行环境,mod_python是不可少的(据说mod_swgi也是可以的,没有亲测).使用命令安装mod_python. 安装: apt-get install lib ...

  2. Proxifier设置代理

    1.首先需要开启http代理选项---配置文件->高级->HTTP代理服务器,勾选“启用HTTP代理服务器支持” 2.然后开始添加代理服务器选择“配置文件->代理服务器”,在弹出框点 ...

  3. [Codeforces137C]History(排序,水题)

    题目链接:http://codeforces.com/contest/137/problem/C 题意:给n对数,分别是一个事件的起始和终止时间.问被有几个事件被其他事件包含. 思路:先排序,按照起始 ...

  4. poj 1699 Best Sequence (搜索技巧 剪枝 dfs)

    题目链接 题意:给出几个基因片段,要求你将它们排列成一个最短的序列,序列中使用了所有的基因片段,而且不能翻转基因. 分析:先计算出add数组,再dfs枚举. 空间复杂度O(n*n),  最坏时间复杂度 ...

  5. 转:MVC2表单验证失败后,直接返回View,已填写的内容就会清空,可以这样做;MVC2输出文本;MVC2输出PDF文件

    ViewData.ModelState.AddModelError("FormValidator", message); foreach (string field in Requ ...

  6. 如何使用jetty

    一直都听说jetty跟Tomcat一样,是一个web容器.之前做项目的时候,也使用过jetty,不过当时jetty是作为一个插件,跟maven集成使用的.那个时候,由于是第一次使用jetty,感觉je ...

  7. mysql 索引与优化like查询

    索引与优化like查询 1. like %keyword    索引失效,使用全表扫描.但可以通过翻转函数+like前模糊查询+建立翻转函数索引=走翻转函数索引,不走全表扫描. 2. like key ...

  8. 最简单的视音频播放示例7:SDL2播放RGB/YUV

    本文记录SDL播放视频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API ...

  9. Spring学习之基本概念

    Spring 基本概念 Spring优点: 1.Spring不同于其它的Framework,它要提供的是一种管理你的业务对象的方法. 2.DI有效的降低了耦合度 3.AOP提供了通用任务的集中管理 4 ...

  10. 【DFS,双向】NYOJ-20-吝啬的国度

    [题目链接:NYOJ-20] 很巧妙,要好好想想 #include <iostream> #include <stdio.h> #include <vector> ...