项目中出现了二分类数据不平横问题,研究总结下对于类别不平横问题的处理经验:

为什么类别不平横会影响模型的输出?

  许多模型的输出类别是基于阈值的,例如逻辑回归中小于0.5的为反例,大于则为正例。在数据不平衡时,默认的阈值会导致模型输出倾向与类别数据多的类别。

因此可以在实际应用中,解决办法包括:

1)调整分类阈值,使得更倾向与类别少的数据。

2)选择合适的评估标准,比如ROC或者F1,而不是准确度(accuracy)

3)过采样法(sampling):来处理不平横的问题。分为欠采样(undersampling)和过采样(oversampling)两种。

  • 过采样:重复正比例数据,实际上没有为模型引入更多数据,过分强调正比例数据,会放大正比例噪音对模型的影响。
  • 欠采样:丢弃大量数据,和过采样一样会存在过拟合的问题。 由于随机过采样采取简单复制样本的策略来增加少数类样本,这样容易产生模型过拟合的问题,即使得模型学习到的信息过于特别(Specific)而不够泛化(General)。

4)数据合成:SMOTE(Synthetic Minority Oversampling Technique)即合成少数类过采样技术,它是基于随机过采样算法的一种改进方案,SMOTE算法的基本思想是对少数类样本进行分析并根据少数类样本人工合成新样本添加到数据集中。

欠采样(undersampling)和过采样(oversampling)会对模型带来怎样的影响的更多相关文章

  1. MCMC(三)MCMC采样和M-H采样

    MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样(待填坑) 在MCMC(二)马尔科夫链中我们讲到给定一个概率平稳分布$\pi$ ...

  2. SQL Server 查找统计信息的采样时间与采样比例

    有时候我们会遇到,由于统计信息不准确导致优化器生成了一个错误的执行计划(或者这样表达:一个较差的执行计划),从而引起了系统性能问题.那么如果我们怀疑这个错误的执行计划是由于统计信息不准确引起的.那么我 ...

  3. 机器学习入门-数据过采样(上采样)1. SMOTE

    from imblearn.over_sampling import SMOTE  # 导入 overstamp = SMOTE(random_state=0) # 对训练集的数据进行上采样,测试集的 ...

  4. 图像的降采样与升采样(二维插值)----转自LOFTER-gengjiwen

    图像的降采样与升采样(二维插值) 1.先说说这两个词的概念: 降采样,即是采样点数减少.对于一幅N*M的图像来说,如果降采样系数为k,则即是在原图中 每行每列每隔k个点取一个点组成一幅图像.降采样很容 ...

  5. 《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样)

    目录 1. 语言模型 2. n元语法 3. 语言模型数据集 4. 时序数据的采样 4.1 随机采样 4.2 相邻采样 一段自然语言文本可以看作是一个离散时间序列,给定一个长度为\(T\)的词的序列\( ...

  6. STM32 ADC多通道规则采样和注入采样

    layout: post tags: [STM32] comments: true 文章目录 layout: post tags: [STM32] comments: true 什么是ADC? STM ...

  7. opencv::图像上采样和降采样

    图像金字塔概念 . 我们在图像处理中常常会调整图像大小,最常见的就是放大(zoom in)和缩小(zoom out),尽管几何变换也可以实现图像放大和缩小,但是这里我们介绍图像金字塔 . 一个图像金字 ...

  8. 强化学习 3—— 使用蒙特卡洛采样法(MC)解决无模型预测与控制问题

    一.问题引入 回顾上篇强化学习 2 -- 用动态规划求解 MDP我们使用策略迭代和价值迭代来求解MDP问题 1.策略迭代过程: 1.评估价值 (Evaluate) \[v_{i}(s) = \sum_ ...

  9. STM32之ADC+步骤小技巧(英文)

    神通广大的各位互联网的网友们.大家早上中午晚上好好好.今早起来很准时的收到了两条10086的扣月租的信息.心痛不已.怀着这心情.又开始了STM32的研究.早上做了计算机控制的PID实验,又让我想起了飞 ...

随机推荐

  1. bzoj3720: Gty的妹子树(树分块)

    传送门 好珂怕…… 树分块是什么东西啊……感觉好暴力…… 直接贴一下好了->这里 //minamoto #include<iostream> #include<cstdio&g ...

  2. shell学习(13)- vim

    其中部分内容是转载的. 在命令状态下对当前行用== (连按=两次), 或对多行用n==(n是自然数)表示自动缩进从当前行起的下面n行.你可以试试把代码缩进任意打乱再用n==排版,相当于一般IDE里的c ...

  3. Sublime Text 3 多行游标

    选中要修改的地方ctrl+D ,要跳过不需要修改的选中的就用ctrl+k+d 选中要修改的地方ctrl+D,选中所有要修改的 alt+f3 ctrl+A  ,然后ctrl+shift+L 按住shif ...

  4. not null 非空约束

    例子:create table tb1(     id int,     name varchar(20) not null); 注意  空字符不等于null #手动,添加非空约束 (必须这个字段,没 ...

  5. adb 调系统时间

    1.修改前提 获取系统root权限,然后adb shell进入shell界面 adb shell su 2.时区设置 cat /data/property/persist.sys.timezone / ...

  6. leetcode--Learn one iterative inorder traversal, apply it to multiple tree questions (Java Solution)

    will show you all how to tackle various tree questions using iterative inorder traversal. First one ...

  7. SpringBoot | 第二十六章:邮件发送

    前言 讲解了日志相关的知识点后.今天来点相对简单的,一般上,我们在开发一些注册功能.发送验证码或者订单服务时,都会通过短信或者邮件的方式通知消费者,注册或者订单的相关信息.而且基本上邮件的内容都是模版 ...

  8. CSS中的IFC和BFC入门

    CSS中的IFC和BFC入门   提到CSS,首先会想到的就是盒模型,如果对于盒模型不是很理解的,看这里.这是一个基础的系列,看了盒模型还可以看看box-sizing,好了不多说了,下面介绍今天的重点 ...

  9. 批量 多个JPG生产PDF .net C#

    using iTextSharp.text; using iTextSharp.text.pdf; using System; using System.Collections.Generic; us ...

  10. P1681 最大正方形 Iand II

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...