题目链接: http://codeforces.com/problemset/problem/822/D

题意: 输入 t, l, r 求 t0·f(l) + t1·f(l + 1) + ... + tr - l·f(r) % (1e9 + 7) , 至于 f(n) 是多少还是直接去看题目描述吧, 好难说清楚;

思路: xjb

很显然将 n 分解成质因子积的形式时比的场数最少, 那么可以用prime[i] 存储 i 的最小素数因子, 然后 n 不断除 prime[n] 即可得到 n 的质因子积的形式;

剩下的按照公式来就好了;

代码:

 #include <iostream>
#define ll long long
using namespace std; const int mode = 1e9 + ;
const int MAXN = 5e6 + ;
int prime[MAXN]; void get_prime(void){
for(int i = ; i < MAXN; i++){
if(!prime[i]){
for(int j = ; j * i < MAXN; j++){
if(!prime[i * j]) prime[i * j] = i;
}
}
}
} ll get_f(ll n){
ll ans = ;
while(n > ){
ll cnt = prime[n];
ans += cnt * (cnt - ) / * (n / cnt);
if(ans >= mode) ans %= mode;
n /= cnt;
}
return ans;
} int main(void){
get_prime();
ll t, l, r, ans = , cnt = ;
cin >> t >> l >> r;
for(ll i = l; i <= r; i++){
ans += cnt * get_f(i);
if(ans >= mode) ans %= mode;
cnt = cnt * t % mode;
}
cout << ans << endl;
return ;
}

cf822D(质因子)的更多相关文章

  1. Openjudge 1.13-21:最大质因子序列(每日两水)

    总时间限制:  1000ms 内存限制:  65536kB 描述 任意输入两个正整数m, n (1 < m < n <= 5000),依次输出m到n之间每个数的最大质因子(包括m和n ...

  2. hdu5317 RGCDQ (质因子种数+预处理)

    RGCDQ 题意:F(x)表示x的质因子的种数.给区间[L,R],求max(GCD(F(i),F(j)) (L≤i<j≤R).(2<=L < R<=1000000) 题解:可以 ...

  3. 快速求n的质因子(数论)

    快速求n的质因子 如何尽快地求出n的质因子呢?我们这里又涉及两个好的算法了! 第一个:用于每次只能求出一个数的质因子,适用于题目中给的n的个数不是很多,但是n又特别大的 #include<std ...

  4. UVA 10780 Again Prime? No Time. 分解质因子

    The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...

  5. 一个数n的最大质因子

    #include<cstdio> #include<cmath> using namespace std; #define Max(x, y) (x > y ? x : ...

  6. BZOJ 3181([Coci2012]BROJ-最小质因子为p的第k小素数)

    3181: [Coci2012]BROJ Time Limit: 10 Sec   Memory Limit: 64 MB Submit: 26   Solved: 7 [ Submit][ Stat ...

  7. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  8. HDU 4135 Co-prime (容斥+分解质因子)

    <题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...

  9. HDU 4320 Arcane Numbers 1(质因子包含)

    http://acm.hdu.edu.cn/showproblem.php?pid=4320 题意: 给出A,B,判断在A进制下的有限小数能否转换成B进制下的有限小数. 思路: 这位博主讲得挺不错的h ...

随机推荐

  1. 分享知识-快乐自己:idea的断点调试

    1:Step Over ,进入下一步,如果是方法,那就直接跳过(F8) 2:Step Into,进入下一步,如果是方法,就进入方法内部,但是不会进入jdk封装的方法.(F7) 3:Force Step ...

  2. jQuery-中的事件

    [jQuery中的事件] javascript和html之间的交互是通过用户和浏览器操作页面时引发的事件来处理的,虽然传统的javascript能完成这些交互,但事jQuery增加并扩充了基本事件处理 ...

  3. $.ajax()方法详解(转)

    以下内容转自:http://www.cnblogs.com/tylerdonet/p/3520862.html   尊重原创,请访问原创文章 jquery中的ajax方法参数总是记不住,这里记录一下. ...

  4. 201621123014《Java程序设计》第三周学习总结

    <Java程序设计>第三周实验报告 1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识 ...

  5. freeMarker(十)——模板语言之内建函数

    学习笔记,选自freeMarker中文文档,译自 Email: ddekany at users.sourceforge.net 1.字符串内建函数 这些内建函数作用于表达式左侧的字符串值. 如果左侧 ...

  6. QT之在QML中使用C++类和对象

    QML其实是对ECMAScript的扩展,融合了Qt object系统,它是一种新的解释性语言,QML引擎虽然由Qt C++实现,但QML对象的运行环境说到底和C++对象的上下文环境是不通的,是平行的 ...

  7. LOJ2719 「NOI2018」冒泡排序

    「NOI2018」冒泡排序 题目描述 最近,小S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 1 到n 的排列的冒泡排序. 下面是对冒泡排序的算法描述. 输入:一个长度为n 的排列p[ ...

  8. 洛谷 P4525 & P4526 [模板] 自适应辛普森积分

    题目:https://www.luogu.org/problemnew/show/P4525 https://www.luogu.org/problemnew/show/P4526 学习辛普森积分:h ...

  9. mysql 用户和存储过程相关命令

    如何显示所有的存储过程?select `name` from mysql.proc where db='db_name' and `type`='procedure';orshow procedure ...

  10. CentOS 7关闭firewalld启用iptables

    在CentOS7中,有很多CentOS 6中的常用服务发生了变化. 其中iptables是其中比较大的一个.防火墙iptables被firewalld取代. 本文将介绍,如果采用systemctl关闭 ...