点开这题纯属无聊……不过既然写掉了,那就丢一个模板好了

不得不说,可持久化并查集实现真的很暴力,就是把并查集的数组弄一个主席树可持久化。

有一点要注意的是不能写路径压缩,这样跳版本的时候会错,所以弄一个按秩合并来降低时间复杂度。

总时间复杂度$O(nlog^2n)$。

听说用siz实现按秩合并会比较好,因为这样还能查询集合大小,有时间以后补上。

Code:

#include <cstdio>
using namespace std; const int N = 1e5 + ;
const int M = 2e5 + ; int n, qn; inline void read(int &X) {
X = ;
char ch = ;
int op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} struct Node {
int lc, rc, dep, fa;
}; namespace PUfs {
Node s[N * ];
int root[M * ], nodeCnt; #define mid ((l + r) >> 1) void build(int &p, int l, int r) {
p = ++nodeCnt;
if(l == r) {
s[p].fa = l;
return;
} build(s[p].lc, l, mid);
build(s[p].rc, mid + , r);
} void modify(int &p, int l, int r, int x, int f, int pre) {
p = ++nodeCnt;
if(l == r) {
s[p].fa = f;
s[p].dep = s[pre].dep;
return;
} s[p].lc = s[pre].lc, s[p].rc = s[pre].rc;
if(x <= mid) modify(s[p].lc, l, mid, x, f, s[pre].lc);
else modify(s[p].rc, mid + , r, x, f, s[pre].rc);
} void add(int p, int l, int r, int x) {
if(l == r) {
s[p].dep++;
return;
}
if(x <= mid) add(s[p].lc, l, mid, x);
else add(s[p].rc, mid + , r, x);
} int query(int p, int l, int r, int x) {
if(l == r) return p; if(x <= mid) return query(s[p].lc, l, mid, x);
else return query(s[p].rc, mid + , r, x);
} int find(int now, int x) {
int f = query(now, , n, x);
if(s[f].fa == x) return f;
return find(now, s[f].fa);
} } using namespace PUfs; inline void print(int p) {
printf("%d: ", p);
for(int j = ; j <= n; j++)
printf("%d ", s[find(root[p], j)].fa);
/* for(int j = 1; j <= n; j++)
printf("%d ", query(root[p], 1, n, j)); */
printf("\n");
} inline void swap(int &x, int &y) {
int t = x;
x = y;
y = t;
} int main() {
read(n), read(qn); nodeCnt = ;
build(root[], , n); // print(0); for(int op, i = ; i <= qn; i++) {
read(op);
if(op == ) {
root[i] = root[i - ];
int x, y;
read(x), read(y);
int fx = find(root[i], x), fy = find(root[i], y);
if(s[fx].fa == s[fy].fa) continue;
if(s[fx].dep > s[fy].dep) swap(fx, fy);
modify(root[i], , n, s[fx].fa, s[fy].fa, root[i - ]);
if(s[fx].dep == s[fy].dep) add(root[i], , n, s[fy].fa);
}
if(op == ) {
int k;
read(k);
root[i] = root[k];
}
if(op == ) {
root[i] = root[i - ];
int x, y;
read(x), read(y);
int fx = find(root[i], x), fy = find(root[i], y);
if(s[fx].fa == s[fy].fa) puts("");
else puts("");
}
// print(i);
} return ;
}

Luogu 3402 可持久化并查集的更多相关文章

  1. 洛谷P4768 [NOI2018]归程 [可持久化并查集,Dijkstra]

    题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时 ...

  2. 洛谷P3402 【模板】可持久化并查集 [主席树,并查集]

    题目传送门 可持久化并查集 n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 ...

  3. bzoj3673 & bzoj3674 & 洛谷P3402 可持久化并查集

    题目:bzoj3673:https://www.lydsy.com/JudgeOnline/problem.php?id=3673 bzoj3674:https://www.lydsy.com/Jud ...

  4. 带撤销并查集 & 可持久化并查集

    带撤销并查集支持从某个元素从原来的集合中撤出来,然后加入到一个另外一个集合中,或者删除该元素 用一个映射来表示元素和并查集中序号的关系,代码中用\(to[x]\) 表示x号元素在并查集中的 id 删除 ...

  5. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  6. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  7. bzoj3674 可持久化并查集

    我是萌萌的任意门 可持久化并查集的模板题-- 做法好像很多,可以标号法,可以森林法. 本来有O(mloglogn)的神算法(按秩合并+倍增),然而我这种鶸渣就只会写O(mlog2n)的民科算法--再加 ...

  8. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  9. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

随机推荐

  1. hdu-2544-最短路(Floyd算法模板)

    题目链接 题意很清晰,入门级题目,适合各种模板,可用dijkstra, floyd, Bellman-ford, spfa Dijkstra链接 Floyd链接 Bellman-Ford链接 SPFA ...

  2. 骨骼动画 cocos2d-x + cocoStudio <cocos2d-x : version 2.2.0>

    cocos2d-x version 2.2.0 首先,在 HelloWorldScene.cpp 中的 init()函数中 添加如下代码 (资源文件可以直接到 cocos2d-x 中获取) #incl ...

  3. javascript版前端页面RSA非对称加密解密

    最近由于项目需要做一个url传参,并在页面显示参数内容的需求,这样就会遇到一个url地址可能会被假冒, 并传递非法内容显示在页面的尴尬情况 比如xxx.shtml?server=xxx是坏人& ...

  4. 【LeetCode】007. Reverse Integer

    Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Output: 321 Examp ...

  5. zookeeper环境及dubbo-admin管理平台搭建

    一. Zookeeper的安装使用 1.1 Zookeeper介绍 Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hb ...

  6. 我的ubuntu新系统自动装软件脚本

    装一些常用软件 配一下环境变量 #!/bin/bash #download g++sudo apt-get install g++ -y#download codeblockssudo apt-get ...

  7. Oracle 备份与恢复基础

    Oracle 备份与恢复基础 :三思笔记 备份与恢复 A whole database backup is either a consistent backup or an inconsistent ...

  8. java基础知识(15)----StringBuffer与StringBuilder

    StringBuffer字符串缓冲区: 构造一个其中不带字符的字符串缓冲区,初始容量为 16 个字符.特点:1:可以对字符串内容进行修改.2:是一个容器.3:是可变长度的.4:缓冲区中可以存储任意类型 ...

  9. Git学习笔记(一)Git初识及基本操作

    详细完整教程:官方文档,廖神Git教程,武sir 一.什么是Git? 定义:Git是分布式版本控制系统. 1.1什么是版本控制 我们可以回想以下,在我们上学毕业要写论文或是准备一份演讲稿的时候,都会用 ...

  10. Oracle、SqlServer——临时表

    一.oracle 1.概述: oracle数据库的临时表的特点: 临时表默认保存在TEMP中: 表结构一直存在,直到删除:即创建一次,永久使用: 不支持主外键. 可以索引临时表和在临时表基础上建立视图 ...