Python 科学工具笔记

numpy

  • a = numpy.array([1,2,3,4]);// 创建一个numpy的数组对象

    此时a.shape显示的值为(4,);

    由此得出结论在一维的数组中, 数组的是列优先的
  • numpy.random.uniform(low, high):

    产生在low和high之间的随机数
  • numpy.vdot(arrA, arrB):

    计算arrA与arrB的数量积
  • numpy.max(), .min(), .sum(), .average()
  • numpy.random.randn():

Scipy

  • scipy.integrate.quad(funcname, low, high): funcname函数的仅仅返回一个需要求解积分的式子
    low: 积分下线
    high: 积分上限

matplotlib.pyplot

 import matplotlib.pyplot as plt
plt.hist()
plt.plot()
plt.pie()
plt.bar()
plt.show()
plt.scatter()

numpy库使用

  • genfromtxt(filename, delimiter, dtype, skip_header=1/2)

filename: 文件名

delimiter: 分隔符, 用于分隔文件中每行的内容放入到矩阵中

dtype: 矩阵中的类型, ATTENTION: numpy矩阵中的所有元素是同一个类型

skip_header: 是否跳过首行

  • numpy.array(list): 根据list返回一个numpy的矩阵
  • obj.shape: 返回维度信息
  • obj.dtype: 返回numpy的dtype类型对象, 显示矩阵中的元素类型
  • [2], [2:3]: 对以为矩阵, 获取指定的元素

对于二维矩阵元素的获取:

[2:3, 3:4]: 逗号左侧表示对行的切片, 逗号右边表示对列的切片

  • 对numpy中的矩阵进行操作符的操作(<. ==, >)等指的是对矩阵中每一个元素进行该操作, bool类型的操作返回的是bool序列

  • 矩阵中的切片可是一个bool类型的序列, [bool_list], 返回对应的为True的元素组成的序列

  • obj.astype(dtype): 改变元素的类型

  • obj.min(),.max(), sum(),其中可以添加默认参数, axis=1|0, 如果为0表示按照列为单位计算min, max等, 返回每一行的min, max等, 如果为axis=1则是以行为单位

  • numpy.isnan(array): 返回bool序列, 判断元素的空项

  • obj.arange(0, 100, 2)

  • obj.linspace(0, 100, 100)

  • obj.ndim: 返回矩阵的维度

  • obj.size: 元素个数

  • obj.zeros(tuple)

  • obj.ones(tuple)

  • numpy.random.random((2, 3)): 生成2行3列的元素为随机数的矩阵

  • obj0.dot(obj1)或者numpy.dot(obj0, obj1): 矩阵乘法, obj0的列向量与obj1的行向量的数量积

  • numpy.exp(array), numpy.sin(array), numpy.sqrt(array), numpy.floor(array)

  • obj.ravel(): 解开矩阵, 将矩阵拉成以为向量

  • numpy.vstack(obj0, obj1): 将obj0与obj1垂直拼接

  • numpy.hstack(obj0, obj1): 将obj0与obj1水平拼接

  • numpy.vsplit(obj, 3): 将obj垂直切两刀平均分为3个矩阵

  • numpy.hsplit(obj, 3): 同理

  • numpy.vsplit(obj, (2, 3)): 以2行3列的元素所在的列为分隔线分隔为3份

  • numpy.hsplit(obj, (2, 3)): 同理

  • numpy.reshape(2, 3): 调整矩阵的行和列

  • obj.view(): 浅拷贝, 不建议使用

  • obj.copy(): 深拷贝

  • obj.tile(2, 3): 也为拷贝, 但是拷贝出来的矩阵的行是原来的2倍, 列是原来的3倍

  • obj.sort(axis=1|0): 按照行或者列进行判断

pandas库使用(pandas是对numpy的封装, 随意可以混合使用)

  • pandas.read_csv(filename): 读取文件返回DataFrame对象(df), 只要数据是以逗号分隔的都可使用read_csv读取
  • df.dtypes返回类型
  • df.head(3): 查看前3行
  • df.tail(3): 查看后3行
  • df.columns: 列名
  • df.shape: 维度信息, 表格的行和列信息
  • df.loc[index]: 返回指定行的信息
  • df['string']: 返回指定的名称的列信息, 返回Series, DataFrame就是有很多个Series中组成的
  • 在pandas中的python内置的str类型为object类型(dtype中显示的)
  • obj.dropna(): 去掉有空项的行
  • Series对象

series.index返回index序列

series.sortindex排序index

series.sortvalues排序values

series[0]|series['str']: 返回索引对应的value

matplotlib.pyplot库使用

  • 画出折线图

import matplotlib.pyplot as plt

x_values = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

y_values = [100, 200, 300, 120, 12, 213, 123]

x_label = 'Days'

y_label = 'Rain flow'

line_color = 'red'

legend_string = 'Trend'

plt.plot(x_label, y_label, c=line_color, label=legend_string) # plot函数作用: 画出图或者线(指的仅仅是折线, 柱形图的, 并不包含坐标的绘画)

plot函数参数介绍:

1: x轴数据序列

2: y轴数据序列

3: c: 折线的颜色

4: label: 折线对应的名称

plt.xlabel(x_label)

plt.ylabel(y_label)

plt.title('Demo')

plt.ledend(loc='best') # 显示折线对应的label, 就是图例

plt.xticks(rotation=45) # 设置x轴显示的数据的倾斜度为45, 便于显示标签

plt.show() # 显示图形

Python 科学工具使用的更多相关文章

  1. Python 科学工具笔记

    Python 科学工具笔记 numpy a = numpy.array([1,2,3,4]);// 创建一个numpy的数组对象 此时a.shape显示的值为(4,); 由此得出结论在一维的数组中, ...

  2. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  3. Python科学计算(二)windows下开发环境搭建(当用pip安装出现Unable to find vcvarsall.bat)

    用于科学计算Python语言真的是amazing! 方法一:直接安装集成好的软件 刚开始使用numpy.scipy这些模块的时候,图个方便直接使用了一个叫做Enthought的软件.Enthought ...

  4. 你不得不看的Python机器学习工具

    IEEE Spectrum排行榜第一,Skill UP排名第一的开发工具,Stack Overflow年度调查中程序员最感兴趣的选择,Stack Overflow 6月份访问量最多的编程语言..... ...

  5. Python 科学计算-介绍

    Python 科学计算 作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文 ...

  6. Python科学计算基础包-Numpy

    一.Numpy概念 Numpy(Numerical Python的简称)是Python科学计算的基础包.它提供了以下功能: 快速高效的多维数组对象ndarray. 用于对数组执行元素级计算以及直接对数 ...

  7. python 科学计算及数据可视化

    第一步:利用python,画散点图. 第二步:需要用到的库有numpy,matplotlib的子库matplotlib.pyplot numpy(Numerical Python extensions ...

  8. PyCharm for Mac(Python 开发工具)破解版安装

    1.软件简介    PyCharm 是 macOS 系统上一款 Python 编辑利器,具有智能代码编辑器,能理解 Python 的特性并提供卓越的生产力推进工具:自动代码格式化.代码完成.重构.自动 ...

  9. python 开发工具简介

    一.python 开发工具简介 1.IDLE IDLE是开发python程序的基本IDE(集成开发环境),具备基本的IDE的功能,是非商业Python开发的不错的选择.当安装好python以后,IDL ...

随机推荐

  1. Layer 父子页面之间的交互

    父页面获取子页面 var body = layer.getChildFrame('body',index);//建立父子联系 body.find("#parameter").val ...

  2. Linux的防火墙iptables配置示例

    注:内容来自网络 一.关闭防火墙 1.重启后永久性生效: 开启:chkconfig iptables on 关闭:chkconfig iptables off 2.即时生效,重启后失效: 开启:ser ...

  3. LinkExtractor 构造器各参数说明

    LinkExtractor 构造器各参数说明 特例: LinkExtractor构造器的所有参数都有默认值 各参数说明: allow 接收一个正则表达式或一个正则表达式列表,提取绝对url与正则表达式 ...

  4. Linux 下的 etc

    /etc etc不是什么缩写,是and so on的意思 来源于 法语的 et cetera 翻译成中文就是 等等 的意思. 至于为什么在/etc下面存放配置文件, 按照原始的UNIX的说法(linu ...

  5. 如何在cuda内核函数中产生随机数(host端调用,device端产生)

    最近,需要在kernel函数中调用浮点型的随机数.于是上网搜了下相关资料,一种方式是自己手动写一个随机数的__device__函数,然后在调用的时候调用这个函数.另一种,原来cuda在toolkit中 ...

  6. Window安装TensorFlow- GPU环境

    [简述] 关于Window安装TensorFlow- GPU环境的文章我想网站已经有非常多了,但是为什么还要写这篇文章呢,就是被网上的文章给坑了.由于pip install tensorflow-gp ...

  7. SpringMVC from 表单标签和 input 表单标签

    刚学习很懵  不知道还有springmvc 自己的表单  于是乎就上网查了一下  这个真的好用多啦 刚学习很懵  不知道还有springmvc 自己的表单  于是乎就上网查了一下  这个真的好用多啦 ...

  8. csv HTTP简单表服务器

    HTTP Simple Table Server Download Performance testing with JMeter can be done with several JMeter in ...

  9. 【实例分割】PANet简单笔记

    PANet是18年的一篇CVPR,作者来自港中文,北大,商汤与腾讯优图,PANET可看作Mask-RCNN+,是在Mask-RCNN基础上做的几处改进. 论文地址:https://arxiv.org/ ...

  10. Linux系统结构及常用命令

    一.系统结构 Linux是一个倒树形结构,最大的目录名叫“/”(根目录) 根目录之下有许多的二级目录,这些目录在系统中都拥有自己不同的功能,如图: 以后的诸多命令的执行和操作都与这些目录相关,现在了解 ...