题目大意

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值。

题解

  1. 问题转换,建立模型。

    可以发现,本题就是要求小根完全二叉树的个数。
  2. 树上dp

    定义f[n]为以n为根的完全二叉树个数。

    根据乘法原理,

    f[n] = f[i<<1] * f[i<<1|1] * C(s[i]-1, i << 1)

    可以知道,n可以从后向前递推。

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e6+5;
#define ll long long
int n, p;
int f[maxn], s[maxn];
int fact[maxn], ifact[maxn];
int pow(int a, int b, int p) {
int ans = 1;
while(b) {
if(b & 1) ans = (ll) ans * a % p;
b >>= 1;
a = (ll)a * a %p;
}
return ans;
}
int inv(int n, int p) {
return pow(n, p-2, p);
}
void init() {
fact[1] = 1;
ifact[1] = 1;
for(int i = 2; i <= n; i++) {
fact[i] = (ll)i * fact[i-1] % p;
ifact[i] = inv(fact[i], p);
}
}
int C(int n, int m, int p) {
if(n < m) return 0;
return (ll)fact[n] * ifact[m] % p * ifact[n-m] % p;
}
int lucas(int n, int m, int p) {
if(!n && !m) return 1;
return (ll)C(n%p, m%p, p) * lucas(n/p, m/p, p) % p;
}
int main() {
ifact[0] = 1;
scanf("%d %d", &n, &p);
init();
for(int i = n; i; i--) {
s[i] = s[i<<1] + s[i << 1|1] + 1;
f[i] = lucas(s[i]-1, s[i<<1], p);
if(i << 1 <= n) f[i] = (ll)f[i] * f[i<<1] % p;
if((i << 1 | 1) <= n) f[i] = (ll)f[i] * f[i<<1|1] % p;
}
printf("%d", f[1]);
}

[bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型的更多相关文章

  1. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  2. [BZOJ2111][ZJOI2010]Perm排列计数(组合数学)

    题意就是求一个n个点的堆的合法形态数. 显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的. 设以i为根的堆的形态数为F(i),所以F(i)+= ...

  3. [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)

    题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...

  4. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  5. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  6. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  7. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  8. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

  9. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

随机推荐

  1. [C#]常用开源项目

    [转][C#]常用开源项目 本文来自:http://www.cnblogs.com/sunxuchu/p/6047589.html Json.NET http://www.newtonsoft.com ...

  2. [Bzoj2286]消耗战(虚树+DP)

    Description 题目链接 Solution 在虚树上跑DP即可 Code #include <cstdio> #include <algorithm> #include ...

  3. 笔记-scrapy-pipeline

    笔记-scrapy-pipeline 1.简介 scrapy抓取数据后,使用yield发送item对象至pipeline,pipeline顺序对item进行处理. 一般用于: 清洗,验证,检查数据: ...

  4. Android 第三方库RxLifecycle使用

    1.简单介绍RxLifecycle 1.1.使用原因. 在使用rxjava的时候,如果没有及时解除订阅,在退出activity的时候,异步线程还在执行. 对activity还存在引用,此时就会产生内存 ...

  5. fromkeys语法/set集合/深浅拷贝/列表/字典的删除

    fromkeys语法: dic = {"apple":"苹果", "banana":"香蕉"} 返回新字典. 和原来的没 ...

  6. 4,远程连接Linux

    为什么要远程连接Linux 在实际的工作场景中,虚拟机界面或者物理服务器本地的终端都是很少接触的,因为服务器装完系统之后,都要拉倒IDC机房托管,如果是购买的云主机,那更碰不到服务器本体了,只能通过远 ...

  7. CodeForces 879D Teams Formation

    题意 将一个长度为\(n\)的数组重复\(m\)遍得到一个长度为\(n \times m\)的新序列,然后消掉新序列中连续\(k\)个相同的元素,不断重复这一过程,求最后剩下的序列的长度 分析 首先可 ...

  8. form表单提交和重置小结

    1. input标签 1.1>input[type=submit] <form name="form" method="post" action=& ...

  9. Spark Streaming实例

    Spark Streaming实例分析 2015-02-02 21:00 4343人阅读 评论(0) 收藏 举报  分类: spark(11)  转载地址:http://www.aboutyun.co ...

  10. CentOS 单用户模式:修改Root密码和grub加密[转]

    原文出处: http://zhengdl126.iteye.com/blog/430268 Linux 系统处于正常状态时,服务器主机开机(或重新启动)后,能够由系统引导器程序自动引导 Linux 系 ...