【洛谷1993】小K的农场(差分约束系统模板题)
大致题意: 给你若干组不等式,请你判断它们是否有解。
差分约束系统
看到若干组不等式,应该很容易想到差分约束系统吧。
- \(A-B≥C\):转换可得\(A-B≥C\)
- \(A-B≤C\):转换可得\(B-A≥-C\)
- \(A=B\):可拆得\(A-B≥0\)和\(B-A≥0\)
题意转化
现在我们要考虑,在什么样的情况下,差分约束系统会无解。
很简单,如果我们从跑最长路的角度出发,只要出现了正环,就说明无解。
这样一来,原题就变成了一道判正环的题目。
\(SPFA\)判正环应该都会的吧......
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)<0?-(x):(x))
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define tc() (A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++)
#define N 100000
#define M 100000
#define add(x,y,z) (e[++ee].to=y,e[ee].nxt=lnk[x],e[lnk[x]=ee].val=z)
char ff[100000],*A=ff,*B=ff;
using namespace std;
int n,m,limit,ee=0,lnk[N+5],Inqueue[N+5],vis[N+5];
LL dis[N+5];
struct edge
{
int to,nxt,val;
}e[2*M+5];
deque<int> q;
inline void read(int &x)
{
x=0;static char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+ch-48,isdigit(ch=tc()));
}
inline void write(LL x)
{
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline bool SPFA(int x)//SPFA判正环
{
register int i,k;dis[x]=0,Inqueue[x]=vis[x]=1,q.push_front(x);
while(!q.empty())
{
for(Inqueue[k=q.front()]=0,q.pop_front(),i=lnk[k];i;i=e[i].nxt)
{
static int v;
if(dis[k]+e[i].val>dis[v=e[i].to])
{
dis[v]=dis[k]+e[i].val;
if(!Inqueue[v])
{
if((++vis[v])>=n) return false;
if(q.empty()||dis[v]>dis[q.front()]) q.push_front(v);
else q.push_back(v);
Inqueue[v]=1;
}
}
}
}
return true;
}
int main()
{
freopen("a.in","r",stdin);
register int i,op,x,y,z;
for(read(n),read(m),i=1;i<=m;++i)
{
read(op),read(x),read(y);
if(op<3) read(z);
switch(op)
{
case 1:add(y,x,z);break;//第一种情况可以转化为x-y≥z,因此从y向x建一条边权为z的有向边
case 2:add(x,y,-z);break;//第二种情况可以转化为y-x≥-z,因此从x向y建一条边权为-z的有向边
case 3:add(x,y,0),add(y,x,0);break;//第三种情况可以转化为x-y≥0和y-x≥0,因此分别从x向y和从y向x建一条边权为0的有向边
}
}
for(i=1;i<=n;++i) if(!vis[i]&&!SPFA(i)) return puts("No"),0;//如果某个联通块内出现了正环,输出No并退出程序
return puts("Yes"),0;//输出Yes
}
【洛谷1993】小K的农场(差分约束系统模板题)的更多相关文章
- 洛谷P1993 小K的农场 [差分约束系统]
题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- 洛谷1993 小K的农场
原题链接 裸的差分约束. \(X_a-X_b\geqslant C\) \(X_a-X_b\leqslant C\Rightarrow X_b-X_a\geqslant -C\) \(X_a-X_b\ ...
- 洛谷 P1993 小K的农场 解题报告
P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- 洛谷 P1993 小K的农场
P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- 洛谷P1993 小 K 的农场
题目描述 小 K 在 Minecraft 里面建立很多很多的农场,总共 n 个,以至于他自己都忘记了每个 农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m 个),以下列三种形式描 述: 农场 ...
- 『题解』洛谷P1993 小K的农场
更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...
- 洛谷 P1993 小K的农场 题解
每日一题 day55 打卡 Analysis 这是我们一次考试的T1,但我忘了差分约束系统怎么写了,所以就直接输出Yes混了60分 首先转化题目: 1:表示农场 a 比农场 b 至少多种植了 c 个单 ...
- 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa
原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...
- P1993 小K的农场 差分约束系统
这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...
- 【洛谷3275】[SCOI2011] 糖果(差分约束系统入门题)
点此看题面 大致题意: 有\(N\)个小朋友,要求每个人都得到糖果,且每个人的糖果总数满足一定的关系式,请你求出至少共分给小朋友们多少糖果. 关系式的转换 首先,我们可以将题目中给定的式子进行转换: ...
随机推荐
- 2018上海大都会邀请赛J(数位DP)
#include<bits/stdc++.h>using namespace std;int num[20];//按位储存数字int mod;long long dp[20][110][1 ...
- zoj3435(莫比乌斯反演)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3435 题意: 给出一个三维坐标 (x, y, z), 问该点与 ...
- 帝都Day4(3)——还是数据结构
可并堆 左偏树中 dist[x]=dist[rs[x]]+1 合并的时候,把权志较大的根作为根节点,把这棵树右子树和另一棵树合并. 说明白点:(上图描述有点问题) 设x表示根权值较大的左偏树,y表示根 ...
- angularjs 使用angular-sortable-view实现拖拽效果(包括拖动完成后的方法使用)
首先还是看效果图吧,方便大家可以快速得知是否是自己需要的功能:(抱歉电脑还未安装动图软件,先用.png) 如果上图是你需要的功能效果图,那么请往下看,我有写出来例子哦~ 使用这个插件有几个好处,首先: ...
- BZOJ 3673 可持久化并查集 by zky && BZOJ 3674 可持久化并查集加强版 可持久化线段树
既然有了可持久化数组,就有可持久化并查集.. 由于上课讲过说是只能按秩合并(但是我也不确定...),所以就先写了按秩合并,相当于是维护fa[]和rk[] getf就是在这棵树中找,直到找到一个点的fa ...
- js中大数据量form表单卡顿问题解决
转载大神: http://www.mamicode.com/info-detail-1773696.html
- python模块之calendar方法详细介绍
calendar,是与日历相关的模块.calendar模块文件里定义了很多类型,主要有Calendar,TextCalendar以及HTMLCalendar类型.其中,Calendar是TextCal ...
- SpringBoot项目实现文件上传和邮件发送
前言 本篇文章主要介绍的是SpringBoot项目实现文件上传和邮件发送的功能. SpringBoot 文件上传 说明:如果想直接获取工程那么可以直接跳到底部,通过链接下载工程代码. 开发准备 环境要 ...
- Poj 1743——Musical Theme——————【后缀数组,求最长不重叠重复子串长度】
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22499 Accepted: 7679 De ...
- input累加赋值
需求如下:第一个input添加字符到第二个input,第二个input需要累加. html: <tr> <td rowspan="2" class="D ...