《训练指南》p.125

设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n);

则所求答案为S[n] = f[2]+f[3]+……+f[n];

求出f[n]即可递推求得S[n]:S[n] = S[n - 1] + f[n];

所有gcd(x, n)的值都是n的约数,按照约数进行分类,令g(n, i)表示满足gcd(x, n) = i && x < n 的正整数x的个数,则f[n] = sum{ i * g(n, i) | n % i = 0 };

gcd( x, n ) = i 的充要条件为:gcd( x / i, n / i ) = 1; 因此满足条件的x/i有phi(n/i)个,说明g(n, i) = phi( n/i );

如果依次计算f[n],枚举f[n]的约数的话效率太低

因此对于每个i枚举它的倍数n并更新f[n],时间复杂度与素数筛法同阶。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> #define LL long long int using namespace std; const int MAXN = ; LL phi[MAXN];
LL S[MAXN];
LL f[MAXN]; //筛法计算欧拉数
void phi_table( int n )
{
for ( int i = ; i < n; ++i ) phi[i] = ;
phi[] = ;
for ( int i = ; i < n; ++i )
if ( !phi[i] )
{
for ( int j = i; j < n; j += i )
{
if ( !phi[j] )
phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
return;
} int main()
{
phi_table( MAXN ); memset( f, , sizeof(f) );
for ( int i = ; i < MAXN; ++i )
for ( int j = i * ; j < MAXN; j += i )
f[j] += i * phi[j / i]; S[] = f[];
for ( int i = ; i < MAXN; ++i )
S[i] = S[ i - ] + f[i]; int n;
while ( scanf( "%d", &n ), n )
{
printf("%lld\n", S[n] );
}
return ;
}

UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表的更多相关文章

  1. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  2. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  3. bzoj 2190 线性生成欧拉函数表

    首先我们知道,正方形内个是对称的,关于y=x对称,所以只需要算出来一半的人数 然后乘2+1就行了,+1是(1,1)这个点 开始我先想的递推 那么我们对于一半的三角形,一列一列的看,假设已经求好了第I- ...

  4. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  5. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  6. UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

    题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...

  7. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  8. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

  9. UVA 11426 GCD - Extreme (II) (欧拉函数)题解

    思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...

随机推荐

  1. 检测pycaffe安装好没

    进入python然后import caffe,如果没报错就表示安装好了

  2. Feature分支

    软件开发中,总有无穷无尽的新的功能要不断添加进来. 添加一个新功能时,你肯定不希望因为一些实验性质的代码,把主分支搞乱了,所以,每添加一个新功能,最好新建一个feature分支,在上面开发,完成后,合 ...

  3. skimage.io.imread vs caffe.io.load_image

    这两周在跑一个模型,我真的是被折腾的要崩溃了. 最后原因就是数据类型的问题,你说是不是应该管小黑屋啊. skimage.io.imread得到的是uint8的数据,而caffe.io.load_ima ...

  4. 开发SDK注意事项

    1. 修改类别文件名及类别方法. 开发SDK时通常会用到比较多的第三方的类别方法, 这样的话, 开发者在使用你的SDK时, 因为他可能也会加一些第三方的开源库, 比如都使用了NSString的md5类 ...

  5. JZOJ 5906. 传送门

    Description             8102年,Normalgod在GLaDOS的帮助下,研制出了传送枪.但GLaDOS想把传送枪据为己有,于是把Normalgod扔进了一间实验室.这间实 ...

  6. Linux下 VI 编辑器操作

    VI编辑器的三种模式:命令模式.输入模式.末行模式. 1.命令模式:vi启动后默认进入的是命令模式,从这个模式使用命令可以切换到另外两种模式,同时无论在何种模式下,[Esc]键都可以回到命令模式.在命 ...

  7. Huffman Tree -- Huffman编码

    #include <stdlib.h> #include <stdio.h> #include <string.h> typedef struct HuffmanT ...

  8. 初见spark-04(高级算子)

    今天,这个是spark的高级算子的讲解的最后一个章节,今天我们来介绍几个简单的算子, countByKey val rdd1 = sc.parallelize(List(("a", ...

  9. saltstack plug in

    目录 可插拔的子系统 灵活性 虚拟模块 salt的核心架构提供了一种高速的交流总线,在核心架构的上层,salt暴露出来的特征是:松散耦合,可插拔的子系统. 可插拔的子系统 salt包含20中插件系统, ...

  10. PHP.13-日历类实现

    日历类实现 1.输出星期 calendar.class.php <?php class Calendar{ function out(){//输出表格 echo '<table align ...