压缩感知重构算法之压缩采样匹配追踪(CoSaMP)





然后在网上找到了符合论文中符号的代码。
function Sest = cosaomp(Phi,u,K,tol,maxiterations)
Sest = zeros(size(Phi,2),1);
v = u;
t = 1;
numericalprecision = 1e-12;
T = [];
while (t <= maxiterations) && (norm(v)/norm(u) > tol)
y = abs(Phi'*v);
[vals,z] = sort(y,'descend');
Omega = find(y >= vals(2*K) & y > numericalprecision);
T = union(Omega,T);
b = pinv(Phi(:,T))*u;
[vals,z] = sort(abs(b),'descend');
Kgoodindices = (abs(b) >= vals(K) & abs(b) > numericalprecision);
T = T(Kgoodindices);
Sest = zeros(size(Phi,2),1);
phit = Phi(:,T);
b = pinv(phit)*u;
Sest(T) = b;
v = u - phit*b;
t = t+1;
end
接下来综合代码我准备强行解释一波论文算法的伪代码流程,哎呀半懂半懂希望以后要全懂全懂。


1、CoSaMP重构算法流程



步骤(5)稍微有点绕,综合代码理解一下还是不难的。
2、压缩采样匹配追踪(CoSaOMP)Matlab代码(CS_CoSaMP.m)
function [ theta ] = CS_CoSaMP( y,A,K )
%CS_CoSaOMP Summary of this function goes here
%Created by jbb0523@@2015-04-29
%Version: 1.1 modified by jbb0523 @2015-05-09
% Detailed explanation goes here
% y = Phi * x
% x = Psi * theta
% y = Phi*Psi * theta
% 令 A = Phi*Psi, 则y=A*theta
% K is the sparsity level
% 现在已知y和A,求theta
% Reference:Needell D,Tropp J A.CoSaMP:Iterative signal recovery from
% incomplete and inaccurate samples[J].Applied and Computation Harmonic
% Analysis,2009,26:301-321.
[y_rows,y_columns] = size(y);
if y_rows<y_columns
y = y';%y should be a column vector
end
[M,N] = size(A);%传感矩阵A为M*N矩阵
theta = zeros(N,1);%用来存储恢复的theta(列向量)
Pos_theta = [];%用来迭代过程中存储A被选择的列序号
r_n = y;%初始化残差(residual)为y
for kk=1:K%最多迭代K次
%(1) Identification
product = A'*r_n;%传感矩阵A各列与残差的内积
[val,pos]=sort(abs(product),'descend');
Js = pos(1:2*K);%选出内积值最大的2K列
%(2) Support Merger
Is = union(Pos_theta,Js);%Pos_theta与Js并集
%(3) Estimation
%At的行数要大于列数,此为最小二乘的基础(列线性无关)
if length(Is)<=M
At = A(:,Is);%将A的这几列组成矩阵At
else%At的列数大于行数,列必为线性相关的,At'*At将不可逆
if kk == 1
theta_ls = 0;
end
break;%跳出for循环
end
%y=At*theta,以下求theta的最小二乘解(Least Square)
theta_ls = (At'*At)^(-1)*At'*y;%最小二乘解
%(4) Pruning
[val,pos]=sort(abs(theta_ls),'descend');
%(5) Sample Update
Pos_theta = Is(pos(1:K));
theta_ls = theta_ls(pos(1:K));
%At(:,pos(1:K))*theta_ls是y在At(:,pos(1:K))列空间上的正交投影
r_n = y - At(:,pos(1:K))*theta_ls;%更新残差
if norm(r_n)<1e-6%Repeat the steps until r=0
break;%跳出for循环
end
end
theta(Pos_theta)=theta_ls;%恢复出的theta
end
3、CoSaMP单次重构测试代码
%压缩感知重构算法测试
clear all;close all;clc;
M = 64;%观测值个数
N = 256;%信号x的长度
K = 12;%信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
%% 恢复重构信号x
tic
theta = CS_CoSaMP( y,A,K );
x_r = Psi * theta;% x=Psi * theta
toc
%% 绘图
figure;
plot(x_r,'k.-');%绘出x的恢复信号
hold on;
plot(x,'r');%绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('\n恢复残差:');
norm(x_r-x)%恢复残差
运行结果如下:(信号为随机生成,所以每次结果均不一样)


4、测量数M与重构成功概率关系曲线绘制例程代码
clear all;close all;clc;
%% 参数配置初始化
CNT = 1000;%对于每组(K,M,N),重复迭代次数
N = 256;%信号x的长度
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
K_set = [4,12,20,28,36];%信号x的稀疏度集合
Percentage = zeros(length(K_set),N);%存储恢复成功概率
%% 主循环,遍历每组(K,M,N)
tic
for kk = 1:length(K_set)
K = K_set(kk);%本次稀疏度
M_set = 2*K:5:N;%M没必要全部遍历,每隔5测试一个就可以了
PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率
for mm = 1:length(M_set)
M = M_set(mm);%本次观测值个数
fprintf('K=%d,M=%d\n',K,M);
P = 0;
for cnt = 1:CNT %每个观测值个数均运行CNT次
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
theta = CS_CoSaMP(y,A,K);%恢复重构信号theta
x_r = Psi * theta;% x=Psi * theta
if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功
P = P + 1;
end
end
PercentageK(mm) = P/CNT*100;%计算恢复概率
end
Percentage(kk,1:length(M_set)) = PercentageK;
end
toc
save CoSaMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来
%% 绘图
S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
figure;
for kk = 1:length(K_set)
K = K_set(kk);
M_set = 2*K:5:N;
L_Mset = length(M_set);
plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号
hold on;
end
本程序运行结果:


压缩感知重构算法之压缩采样匹配追踪(CoSaMP)的更多相关文章
- [转]压缩感知重构算法之分段正交匹配追踪(StOMP)
分段正交匹配追踪(StagewiseOMP)或者翻译为逐步正交匹配追踪,它是OMP另一种改进算法,每次迭代可以选择多个原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的 ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...
- 浅谈压缩感知(二十二):压缩感知重构算法之正则化正交匹配追踪(ROMP)
主要内容: ROMP的算法流程 ROMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 一.ROMP的算法流程 正则化正交匹配追踪ROMP算法流程与OMP的最大不同之 ...
- 浅谈压缩感知(二十三):压缩感知重构算法之压缩采样匹配追踪(CoSaMP)
主要内容: CoSaMP的算法流程 CoSaMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 一.CoSaMP的算法流程 压缩采样匹配追踪(CompressiveS ...
- 压缩感知重构算法之子空间追踪(SP)
SP的提出时间比CoSaMP提出时间稍晚一些,但和压缩采样匹配追踪(CoSaMP)的方法几乎是一样的.SP与CoSaMP主要区别在于“In each iteration, in the SP algo ...
- 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)
主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...
- 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...
- 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)
主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...
随机推荐
- scrapy爬虫框架
downloader:负责下载html页面 spider:负责爬取页面内容,我们需要自己写爬取规则 srapy提供了selector,获取的方式有xpath,css,正则,extract item容 ...
- OSGi-简介(01)
OSGi是什么? OSGi联盟现在将OSGi定义为一种技术: OSGi技术是指一系列用于定义Java动态化组件系统的标准.这些标准通过为大型分布式系统以及嵌入式系统提供一种模块化架构减少了软件的复杂度 ...
- 关于XCode9的一些问题
最近几天一直在做一项工作,为新项目在做搭建框架的前期准备,然后恰逢更新iOS11和XCode9,笔者心急的尝了个先,发现了一些问题,记录一下,如果有相同问题的程序猿,也可以参考一下. 目前问题遇到两点 ...
- IIC-BUS INTERFACE
I2C总线是由Philips公司开发的一种简单.双向二线制同步串行总线.它只需要两根线即可在连接于总线上的器件之间传送信息. To control multi-master IIC-bus opera ...
- UWP 自定义状态栏
在UWP开发中,我们可以改变状态栏样式,让你的应用更加好看. 先来一简单的应用: 为了做例子,所以我做的很简单,在MainPage的Grid里,插了一个Image <Grid Backgroun ...
- Vue阻止冒泡
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 一步一个坑 - WinDbg调试.NET程序
引言 第一次用WinDbg来排查问题,花了很多时间踩坑,记录一下希望对后面的同学有些帮助. 客户现场软件出现偶发性的界面卡死现象一直找不出原因,就想着让客户用任务管理器生成了一个dump文件发给我,我 ...
- webpack html
调用了原模板 修改路径 使html放在JS外面 可以传递参数 多个html指定对应chunks 除了某些模块其余的都被引入
- Echarts数据可视化series-effectscatter特效散点图,开发全解+完美注释
全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...
- leetcode 697. Degree of an Array
题目: Given a non-empty array of non-negative integers nums, the degree of this array is defined as th ...