Description

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。

Input

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。

Output

一行一个数,最多进行多少次配对

Sample Input

3
2 4 8
2 200 7
-1 -2 1

Sample Output

4

HINT

n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

正解:费用流。

这题的费用流模型还是比较显然的,不过有两个要注意的地方。

首先这题需要建成二分图的模型,所以每个点的流量肯定会乘$2$,如果直接连可能会导致有些点多用了流量。对于这种情况,我们在每个$i->j$的连边时,把$j->i$也连边,最后把流量除以$2$,就能解决这个问题了。

还有一个问题,题目是问的费用$>=0$的最大流,首先我们肯定要把费用取反,转成最小费用最大流。然后我们可以在每次增广时加一个特判,如果之前增广的费用+当前费用$>0$,那么我们直接取使得费用$<=0$的最大流量就行了。因为费用流每次都是找最短路增广,所以这样做是对的。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1LL<<60)
#define N (3010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ ll nt,to,flow,cap,dis; }g[]; ll head[N],dis[N],vis[N],f[N],p[N],fa[N],a[N],b[N],c[N];
ll q[],n,S,T,flow,cost,num=; il ll gi(){
RG ll x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG ll from,RG ll to,RG ll cap,RG ll cost){
g[++num]=(edge){head[from],to,,cap,cost},head[from]=num; return;
} il ll bfs(RG ll S,RG ll T){
for (RG ll i=;i<=T;++i) dis[i]=inf;
RG ll h=,t=; q[t]=S,dis[S]=,vis[S]=,f[S]=inf;
while (h<t){
RG ll x=q[++h],v;
for (RG ll i=head[x];i;i=g[i].nt){
v=g[i].to;
if (dis[v]>dis[x]+g[i].dis && g[i].cap>g[i].flow){
dis[v]=dis[x]+g[i].dis,fa[v]=x,p[v]=i;
f[v]=min(f[x],g[i].cap-g[i].flow);
if (!vis[v]) vis[v]=,q[++t]=v;
}
}
vis[x]=;
}
if (dis[T]==inf) return ;
if (cost+dis[T]*f[T]>){ //费用>0特判
RG ll x=-cost/dis[T];
flow+=x; return ;
}
flow+=f[T],cost+=dis[T]*f[T];
for (RG ll i=T;i!=S;i=fa[i])
g[p[i]].flow+=f[T],g[p[i]^].flow-=f[T];
return ;
} il ll isprime(RG ll x){
if (x== || x==) return ;
if (!(x&)) return x==;
for (RG ll i=;i*i<=x;++i)
if (!(x%i)) return ;
return ;
} il void work(){
n=gi(),S=*n+,T=*n+;
for (RG ll i=;i<=n;++i) a[i]=gi();
for (RG ll i=;i<=n;++i) b[i]=gi();
for (RG ll i=;i<=n;++i) c[i]=gi();
for (RG ll i=;i<=n;++i){
insert(S,i,b[i],),insert(i,S,,);
insert(n+i,T,b[i],),insert(T,n+i,,);
}
for (RG ll i=;i<=n;++i)
for (RG ll j=;j<=n;++j){
if (a[i]%a[j]) continue;
if (isprime(a[i]/a[j])){
insert(i,n+j,inf,-c[i]*c[j]),insert(n+j,i,,c[i]*c[j]);
insert(j,n+i,inf,-c[i]*c[j]),insert(n+i,j,,c[i]*c[j]);
//防止多余流量影响结果
}
}
while (bfs(S,T)); printf("%lld\n",flow>>); return;
} int main(){
File("match");
work();
return ;
}

bzoj4514 [Sdoi2016]数字配对的更多相关文章

  1. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  2. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

  3. bzoj4514 [Sdoi2016]数字配对(网络流)

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  4. [bzoj4514][SDOI2016]数字配对——二分图

    题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...

  5. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  6. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  7. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  8. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  9. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

随机推荐

  1. ORM-Dapper学习<一>

    ORM 框架简介 对象-关系映射(Object/Relation Mapping,简称ORM),是随着面向对象的软件开发方法发展而产生的.面向对象的开发方法是当今企业级应用开发环境中的主流开发方法,关 ...

  2. webots自学笔记(四)传感器API使用、查看官方文档

           原创文章,来自“博客园,_阿龙clliu” http://www.cnblogs.com/clliu/,转载请注明原文章出处.           不能说webots的学习资料少,只能说 ...

  3. 通过spring 中的@Scheduled来执行定时任务

    以前开发定时任务的功能的时候,是框架里面写好的quartz配置方式,由于功力尚浅,感觉定时跑披定时任务什么的云里雾里,很高大上,每次都不知道怎么修改配置,后来几次接触定时任务发现,还是比较好掌握的,特 ...

  4. impress.js初体验

    概述 如果你已经厌烦了使用PowerPoint制作PPT,那么impress.js是一个非常好的选择,用它做的PPT更加直观,效果也非常的不错.装X是需要一定代价的,不过如果你是个前端爱好者那么一切就 ...

  5. pyqt系列原创入门教程

    pyqt4入门教程 python pyqt4 PyQt是一个创建GUI应用程序的工具包.它是Python编程语言和Qt库的成功融合.Qt库是目前最强大的库之一. 通过pyqt可以实现很多我们想要的功能 ...

  6. 【Java 并发】详解 ThreadLocal

    前言 ThreadLocal 主要用来提供线程局部变量,也就是变量只对当前线程可见,本文主要记录一下对于 ThreadLocal 的理解.更多关于 Java 多线程的文章可以转到 这里. 线程局部变量 ...

  7. jenkins+SVN配置

    开发项目,版本控制必不可少,我用的版本控制软件为SVN,那么如何把jenkins和SVN结合,使得SVN源码一有上传更新,jenkins就马上构建项目呢?下面说一下配置过程   1)         ...

  8. 重温Javascript(一)

    工作中要用到JavaScript,一组复习笔记. 一些看法 1. 想想JavaScript目前最常用的宿主环境,浏览器或者服务端V8,都是单线程,所以不用过多的考虑并发的问题,如果是协程来实现异步的方 ...

  9. Access-自定义控件TabControl

    p{ font-size: 15px; } .alexrootdiv>div{ background: #eeeeee; border: 1px solid #aaa; width: 99%; ...

  10. Ubuntu常用软件安装(附带地址和卸载自带软件)

    跨平台系列汇总:http://www.cnblogs.com/dunitian/p/4822808.html#linux 上次说了安装VSCode(http://www.cnblogs.com/dun ...