bzoj4514 [Sdoi2016]数字配对
Description
Input
Output
一行一个数,最多进行多少次配对
Sample Input
2 4 8
2 200 7
-1 -2 1
Sample Output
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
正解:费用流。
这题的费用流模型还是比较显然的,不过有两个要注意的地方。
首先这题需要建成二分图的模型,所以每个点的流量肯定会乘$2$,如果直接连可能会导致有些点多用了流量。对于这种情况,我们在每个$i->j$的连边时,把$j->i$也连边,最后把流量除以$2$,就能解决这个问题了。
还有一个问题,题目是问的费用$>=0$的最大流,首先我们肯定要把费用取反,转成最小费用最大流。然后我们可以在每次增广时加一个特判,如果之前增广的费用+当前费用$>0$,那么我们直接取使得费用$<=0$的最大流量就行了。因为费用流每次都是找最短路增广,所以这样做是对的。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1LL<<60)
#define N (3010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ ll nt,to,flow,cap,dis; }g[]; ll head[N],dis[N],vis[N],f[N],p[N],fa[N],a[N],b[N],c[N];
ll q[],n,S,T,flow,cost,num=; il ll gi(){
RG ll x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG ll from,RG ll to,RG ll cap,RG ll cost){
g[++num]=(edge){head[from],to,,cap,cost},head[from]=num; return;
} il ll bfs(RG ll S,RG ll T){
for (RG ll i=;i<=T;++i) dis[i]=inf;
RG ll h=,t=; q[t]=S,dis[S]=,vis[S]=,f[S]=inf;
while (h<t){
RG ll x=q[++h],v;
for (RG ll i=head[x];i;i=g[i].nt){
v=g[i].to;
if (dis[v]>dis[x]+g[i].dis && g[i].cap>g[i].flow){
dis[v]=dis[x]+g[i].dis,fa[v]=x,p[v]=i;
f[v]=min(f[x],g[i].cap-g[i].flow);
if (!vis[v]) vis[v]=,q[++t]=v;
}
}
vis[x]=;
}
if (dis[T]==inf) return ;
if (cost+dis[T]*f[T]>){ //费用>0特判
RG ll x=-cost/dis[T];
flow+=x; return ;
}
flow+=f[T],cost+=dis[T]*f[T];
for (RG ll i=T;i!=S;i=fa[i])
g[p[i]].flow+=f[T],g[p[i]^].flow-=f[T];
return ;
} il ll isprime(RG ll x){
if (x== || x==) return ;
if (!(x&)) return x==;
for (RG ll i=;i*i<=x;++i)
if (!(x%i)) return ;
return ;
} il void work(){
n=gi(),S=*n+,T=*n+;
for (RG ll i=;i<=n;++i) a[i]=gi();
for (RG ll i=;i<=n;++i) b[i]=gi();
for (RG ll i=;i<=n;++i) c[i]=gi();
for (RG ll i=;i<=n;++i){
insert(S,i,b[i],),insert(i,S,,);
insert(n+i,T,b[i],),insert(T,n+i,,);
}
for (RG ll i=;i<=n;++i)
for (RG ll j=;j<=n;++j){
if (a[i]%a[j]) continue;
if (isprime(a[i]/a[j])){
insert(i,n+j,inf,-c[i]*c[j]),insert(n+j,i,,c[i]*c[j]);
insert(j,n+i,inf,-c[i]*c[j]),insert(n+i,j,,c[i]*c[j]);
//防止多余流量影响结果
}
}
while (bfs(S,T)); printf("%lld\n",flow>>); return;
} int main(){
File("match");
work();
return ;
}
bzoj4514 [Sdoi2016]数字配对的更多相关文章
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- BZOJ4514[Sdoi2016]数字配对——最大费用最大流
题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...
- bzoj4514 [Sdoi2016]数字配对(网络流)
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- [bzoj4514][SDOI2016]数字配对——二分图
题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...
- BZOJ4514 [Sdoi2016]数字配对 【费用流】
题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...
- bzoj4514: [Sdoi2016]数字配对--费用流
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...
- bzoj4514: [Sdoi2016]数字配对(费用流)
传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
随机推荐
- java利用url实现网页内容的抓取
闲来无事,刚学会把git部署到远程服务器,没事做,所以简单做了一个抓取网页信息的小工具,里面的一些数值如果设成参数的话可能扩展性能会更好!希望这是一个好的开始把,也让我对字符串的读取掌握的更加熟练了, ...
- How to set up Tensorflow inception-v3 model on Windows
There is Inception-v3 model python implementation on GitHub at: https://github.com/tensorflow/models ...
- 感知机和线性单元的C#版本
本文的原版Python代码参考了以下文章: 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 在机器学习如火如荼的时代,Python大行其道,几乎所有的机器学习的 ...
- Web API框架学习——路由(一)
HttpConfiguration(ASP.NET Web API管道的配置是通过HttpConfiguration来完成) : 包括路由注册在内的对整个ASP.NET Web API管道的配置是通过 ...
- Omi v1.0震撼发布 - 令人窒息的Web组件化框架
原文链接--https://github.com/AlloyTeam/omi 写在前面 Omi框架经过几十个版本的迭代,越来越简便易用和强大. 经过周末的连续通宵加班加点,Omi v1.0版本终于问世 ...
- 2017年3月23日 坚果性能测试Loadrunner 免费公开课
2017-03-23 坚果性能测试1群 607937164 我昨天看了一下飞扬老师的讲义PPT,真的很棒,BAT的专业性能老师果然是有好几把刷子,十分受教,相信周四的公开课一定会让大家收益颇丰的. ...
- java开发中的链式思维 —— 设计一个链式过滤器
概述 最近在弄阿里云的sls日志服务,该服务提供了一个搜索接口,可根据各种运算.逻辑等表达式搜出想要的内容.具体语法可见https://help.aliyun.com/document_detail/ ...
- 手机自动化测试:Appium源码之API(2)
手机自动化测试:Appium源码之API(2) TouchAction AppiumDriver的辅助类,主要针对手势操作,比如滑动.长按.拖动等.TouchAction的原理是讲一系列的动作放在 ...
- Oracle DBA管理包脚本系列(二)
该系列脚本结合日常工作,方便DBA做数据管理.迁移.同步等功能,以下为该系列的脚本,按照功能划分不同的包.功能有如下: 1)数据库对象管理(添加.修改.删除.禁用/启用.编译.去重复.闪回.文件读写. ...
- 在SrollView中嵌套GridView或ListView(转)
原文链接:http://blog.csdn.net/gaojinshan/article/details/17055511 我想在同一个界面中,使用两个GridView,两个GridView一起上下滚 ...