在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

(文字和图片来自百度百科)

如果动手来摆放皇后,可以用这样一种思路:在最左侧一列放下一个皇后,然后在右边一列从上到下找到第一个与左边皇后不冲突的位置,摆放第二个皇后;再向yo一列,从上到下找到第一个与前两个皇后不冲突的位置摆放第三个皇后,依次类推,直到在最后一列摆下第八个皇后。

认真思考的话,可以发现这仍然是深度优先搜索的思路,即步步推进,下一步做的事情和当前是一样的。代码:

  1. public class DfsEightQueens {
  2. int[] queens = new int[8]; //记录每一列皇后的摆放位置
  3. int count = 0; //摆法总数
  4. public void dfs(int column) {
  5. if(column == 8) { //8个皇后都已经摆放
  6. count++;
  7. System.out.println("第" + count + "种方法:");
  8. print();
  9. return;
  10. }
  11. for(int i = 0; i < 8; i++) {
  12. queens[column] = i; //在该列的第i行上放置皇后
  13. if(isValid(column)) //检查摆放在该位置是否与前column-1列的皇后有冲突
  14. dfs(column + 1); //没有冲突则开始下一列8个位置的尝试
  15. }
  16. }
  17. private boolean isValid(int column) {
  18. for(int i = 0; i < column; i++) { //第column列上的皇后与前面column-1个皇后比较
  19. if(queens[i] == queens[column]) //两个皇后在同一行上
  20. return false;
  21. if(Math.abs(queens[i] - queens[column]) == (column - i)) //两个皇后在同一对角线上
  22. return false;
  23. }
  24. return true;
  25. }
  26. private void print() {
  27. for(int i = 0; i < 8; i++) {
  28. for(int j = 0; j < 8; j++) {
  29. if(queens[i] == j)
  30. System.out.print("* ");
  31. else
  32. System.out.print("_ ");
  33. }
  34. System.out.println();
  35. }
  36. }
  37. public static void main(String[] args) {
  38. DfsEightQueens q = new DfsEightQueens();
  39. q.dfs(0);
  40. System.out.println("共" + q.count + "种摆放方法");
  41. }
  42. }

输出:

  1. 共92种摆放方法
 
 

Java与算法之(6) - 八皇后问题的更多相关文章

  1. 【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)

    八皇后问题是一道经典的回溯问题.问题描述如下:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉?         看到这个问题,最容易想 ...

  2. JAVA常见算法题(十八)

    package com.xiaowu.demo; /** * 两个乒乓球队进行比赛,各出三人.甲队为a,b,c三人,乙队为x,y,z三人,以抽签决定比赛名单. 有人向队员打听比赛的名单:a说他不和x比 ...

  3. Java实现蓝桥杯 算法提高 八皇后 改

    **算法提高 8皇后·改** 时间限制:1.0s 内存限制:256.0MB 提交此题 问题描述 规则同8皇后问题,但是棋盘上每格都有一个数字,要求八皇后所在格子数字之和最大. 输入格式 一个8*8的棋 ...

  4. 算法学习 八皇后问题的递归实现 java版 回溯思想

    1.问题描述 八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或 ...

  5. 八皇后问题求解java(回溯算法)

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...

  6. 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯

    什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...

  7. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  8. Java编程思想—八皇后问题(数组法、堆栈法)

    Java编程思想-八皇后问题(数组法.堆栈法) 实验题目:回溯法实验(八皇后问题) 实验目的: 实验要求: 实验内容: (1)问题描述 (2)实验步骤: 数组法: 堆栈法: 算法伪代码: 实验结果: ...

  9. 栈(stack)、递归(八皇后问题)、排序算法分类,时间和空间复杂度简介

    一.栈的介绍: 1)栈的英文为(stack)2)栈是一个先入后出(FILO-First In Last Out)的有序列表.3)栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的 ...

随机推荐

  1. 【java提高】---ArrayList源码

    ArrayList源码 一.定义 public class ArrayList<E> extends AbstractList<E> implements List<E& ...

  2. MySQL学习(一) 概述

        MySQL是一个开源的数据库系统,近些年来使用率越来越高,目前属于Oracle公司所有,其拥有MySQL的商标,属于主流版本,由于其开源特性,出现了一些分支,常见的有MariaDB.Perco ...

  3. Chef 自动化运维:开始“烹饪”

    在 Chef Workstation 上创建了一个 cookbook 之后,我们执行以下命令来进行测试: chef-client --local-mode --override-runlist fir ...

  4. grep 、find 、tree 新发现

    [root@localhost tftpboot]# ip address | grep -A 1 " eno16777736"2: eno16777736: <BROADC ...

  5. 命令行执行php脚本 中$argv和$argc

    在实际工作中有可能会碰到需要在nginx命令行执行php脚本的时候,当然你可以去配置一个conf用外网访问. 在nginx命令行中 使用 php index.php 就可以执行这个index.php脚 ...

  6. php date函数

    PHP星期几获取代码: 1 date("l"); 2 //data就可以获取英文的星期比如Sunday 3 date("w"); 4 //这个可以获取数字星期比 ...

  7. Cat 客户端如何构建调用链消息树

    场景 & 代码 Inner0 中的某方法调用了 Inner1,代码 Inner1的代码很简单, Cat通过一个线程本地变量来保存调用链的相关信息,其中核心的数据结构是消息树和操作栈.消息树用来 ...

  8. 5.前端基于react,后端基于.net core2.0的开发之路(5) 配置node层,session设置、获取,请求拦截

    1.总结一下 今年,2月份从深圳来到广州,工作到现在,回头看,完成的项目4-5个,公司基本没有懂技术的领导,所以在技术选型上,我们非常的自由,所以内心一直都不满足现状,加上一起工作的小伙伴给力(哈哈哈 ...

  9. python 字符串中的%s与format

    你可以选择字符串拼接,你也可以选择使用%s或者是format,下面简单介绍一下它们的使用方法: # 在字符串后面跟%,然后后面加上要被替换的值 print('I like %s' % 'apples' ...

  10. [编织消息框架][JAVA核心技术]动态代理应用12-总结

    动态代理这篇比较长,是框架组成的重要基础 回顾下学到的应用技术 1.异常应用 2.annotation技术 3.数值与逻辑分享 4.jdk.cglib.javassist等动态代理技术 5.懒处理.预 ...