The city of D consists of n towers, built consecutively on a straight line. The height of the tower that goes i-th (from left to right) in the sequence equals hi. The city mayor decided to rebuild the city to make it beautiful. In a beautiful city all towers are are arranged in non-descending order of their height from left to right.

The rebuilding consists of performing several (perhaps zero) operations. An operation constitutes using a crane to take any tower and put it altogether on the top of some other neighboring tower. In other words, we can take the tower that stands i-th and put it on the top of either the (i - 1)-th tower (if it exists), or the (i + 1)-th tower (of it exists). The height of the resulting tower equals the sum of heights of the two towers that were put together. After that the two towers can't be split by any means, but more similar operations can be performed on the resulting tower. Note that after each operation the total number of towers on the straight line decreases by 1.

Help the mayor determine the minimum number of operations required to make the city beautiful.

Input

The first line contains a single integer n (1 ≤ n ≤ 5000) — the number of towers in the city. The next line contains n space-separated integers: the i-th number hi (1 ≤ hi ≤ 105) determines the height of the tower that is i-th (from left to right) in the initial tower sequence.

Output

Print a single integer — the minimum number of operations needed to make the city beautiful.

Example

Input
5
8 2 7 3 1
Output
3
Input
3
5 2 1
Output
2
题意: 给出n个正整数,进行若干个操作,使得序列非减,求最少的操作次数;
            操作:
                    每次可以选择两个相邻的数合并为一个;
 
解法:
         (1) dp[i][j]表示 前i个整数合并成非减序列的最小代价,且最后一段区间为j->i
         (2) 枚举最后一段合并的区间;

dp(i)表示使得前i个塔美丽的最小操作次数,sum(i)表示前i座塔的前缀和,last(i)表示使得前i个塔美丽操作次数最小的情况下,最右侧一座塔最小的塔高。

那么就有状态转移方程:dp(i)=min{dp(j)+i-j+1},sum(i)-sum(j)>=last(j).

#include <cstdio>
int dp[],sum[],last[];
int main()
{
int n;
scanf("%d",&n);
for(int i = ;i <= n;i++){
int a;
scanf("%d",&a);
sum[i] = sum[i-]+a;
dp[i] = last[i] = <<;
}
for(int i = ;i <= n;i++){
for(int j = ;j < i;j++){
if(sum[i]-sum[j] >= last[j] && dp[i] >= dp[j]+i-j-){
dp[i] = dp[j]+i-j-;
if(last[i] > sum[i]-sum[j]) last[i] = sum[i]-sum[j];
}
}
}
printf("%d\n",dp[n]);
return ;
}
原文地址http://blog.sina.com.cn/s/blog_140e100580102wkl5.html

Towers CodeForces - 229D的更多相关文章

  1. Codeforces 229D Towers

    http://codeforces.com/problemset/problem/229/D 题意:有n(1<=n<=5,000)座塔排在一条直线上,从左到右每个塔的高度分别为hi(1&l ...

  2. B - Alyona and towers CodeForces - 739C

    链接: https://vjudge.net/contest/202699#problem/B 题意: 给出一个序列,要支持区间加和操作 求其中最长的区间,该区间内的元素满足(ai<ai+1&l ...

  3. Alyona and towers CodeForces - 739C (线段树)

    大意: 给定序列, 要求实现区间加, 询问整个序列最长的先增后减的区间. 线段树维护左右两端递增,递减,先增后减的长度即可, 要注意严格递增, 合并时要注意相等的情况, 要注意相加会爆int. #in ...

  4. Codeforces 626C Block Towers(二分)

    C. Block Towers time limit per test:2 seconds memory limit per test:256 megabytes input:standard inp ...

  5. Codeforces Beta Round #37 A. Towers 水题

    A. Towers 题目连接: http://www.codeforces.com/contest/37/problem/A Description Little Vasya has received ...

  6. codeforces 479B Towers 解题报告

    题目链接:http://codeforces.com/problemset/problem/479/B 题目意思:有 n 座塔,第 i 座塔有 ai 个cubes在上面.规定每一次操作是从最多 cub ...

  7. Codeforces 478D Red-Green Towers

    http://codeforces.com/problemset/problem/478/D 思路:dp:f[i][j]代表当前第i层,用了j个绿色方块的方案数,用滚动数组,还有,数组清零的时候一定要 ...

  8. Codeforces Round #274 (Div. 2) B. Towers

    As you know, all the kids in Berland love playing with cubes. Little Petya has n towers consisting o ...

  9. Codeforces 739C Alyona and towers 线段树

    Alyona and towers 这个题写起来真的要人命... 我们发现一个区间被加上一个d的时候, 内部的结构是不变的, 改变的只是左端点右端点的值, 这样就能区间合并了. 如果用差分的话会简单一 ...

随机推荐

  1. PHPFastCGI进程管理器PHP-FPM详解

    PHP-FPM是一个PHPFastCGI进程管理器,是只用于PHP的.      PHP-FPM其实是PHP源代码的一个补丁,旨在将FastCGI进程管理整合进PHP包中.必须将它patch到你的PH ...

  2. tomcat manager 的用户权限配置,及环境变量CATALINA_HOME的错位问题

    因为tomcat的manager是管理其他项目的发布.删除等操作的管理项目,所以需要为其设置登陆用户和密码,以及用户相应的访问权限,配置如下: tomcat-users.xml需要添加如下内容: &l ...

  3. End up with More Teams UVA - 11088

    End up with More Teams Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu ...

  4. hdu4632

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  5. [原创]KVM虚拟化管理平台的实现

    KVM虚拟化管理平台的实现 源码链接:https://github.com/wsjhk/IaaS_admin.git 根据KVM虚拟化管理的要求,设计并实现网页操作管理KVM虚拟机.设计原理架构如下图 ...

  6. docker命令不需要敲sudo的方法

    由于docker daemon需要绑定到主机的Unix socket而不是普通的TCP端口,而Unix socket的属主为root用户,所以其他用户只有在命令前添加sudo选项才能执行相关操作. 如 ...

  7. FPGA多时钟处理应用

    FPGA项目设计中,通常会遇到多时钟处理.即一个PLL输出多个时钟,根据条件选择合适的时钟用作系统时钟.方案一: 外部晶振时钟进入PLL,由PLL输出多个时钟,MUX根据外部条件选择时钟输出做为系统使 ...

  8. Python自学笔记-进程,线程(Mr serven)

    对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了 ...

  9. C# 使用NPOI 导出Excel

    NPOI可以在没有安装Office的情况下对Word或Excel文档进行读写操作 下面介绍下NPOI操作Excel的方法 首先我们需要下载NPOI的程序集 下载地址 http://npoi.codep ...

  10. c#使用GDI+简单绘图(二)

    // Create the in-memory bitmap where you will draw the image. // This bitmap is 300 pixels wide and ...