题目描述

如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。

输入输出格式

输入格式:

第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。

接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。

接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。

输出格式:

输出包含M行,每行包含一个正整数,依次为每一个询问的结果。

输入输出样例

输入样例#1: 复制

5 5 4
3 1
2 4
5 1
1 4
2 4
3 2
3 5
1 2
4 5
输出样例#1: 复制

4
4
1
4
4

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

样例说明:

该树结构如下:

第一次询问:2、4的最近公共祖先,故为4。

第二次询问:3、2的最近公共祖先,故为4。

第三次询问:3、5的最近公共祖先,故为1。

第四次询问:1、2的最近公共祖先,故为4。

第五次询问:4、5的最近公共祖先,故为4。故输出依次为4、4、1、4、4。

题解

RMQ求LCA的板子。。。

代码

//by 减维
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std; struct edge{
int to,ne;
}e[]; int n,m,s,num,ecnt,head[],dep[],fr[];
int f[][]; void add(int x,int y)
{
e[++ecnt].to=y;
e[ecnt].ne=head[x];
head[x]=ecnt;
} void dfs(int x,int fa)
{
dep[x]=dep[fa]+;
f[++num][]=x;
if(!fr[x])fr[x]=num;
for(int i=head[x];i;i=e[i].ne)
{
int dd=e[i].to;
if(dd==fa)continue;
dfs(dd,x);
f[++num][]=x;
if(!fr[x])fr[x]=num;
}
} void RMQ()
{
for(int j=;(<<j)<=num;++j)
for(int i=;i+(<<j)-<=num;++i)
if(dep[f[i][j-]]<dep[f[i+(<<(j-))][j-]])f[i][j]=f[i][j-];
else f[i][j]=f[i+(<<(j-))][j-];
} int lca(int x,int y)
{
int len=(int)log2(double(y-x+));
return dep[f[x][len]]<dep[f[y-(<<len)+][len]]?f[x][len]:f[y-(<<len)+][len];
} int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int x,y,i=;i<n;++i)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(s,s);
RMQ();
for(int x,y,i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
if(fr[x]>fr[y])swap(x,y);
printf("%d\n",lca(fr[x],fr[y]));
}
}

【RMQ】洛谷P3379 RMQ求LCA的更多相关文章

  1. 【倍增】洛谷P3379 倍增求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  2. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  3. 【树链剖分】洛谷P3379 树链剖分求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  4. 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))

    倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...

  5. 洛谷 P3379 【模板】最近公共祖先(LCA)

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  6. 洛谷P3379 【模板】最近公共祖先(LCA)(树链剖分)

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  7. 洛谷P2680 运输计划 [LCA,树上差分,二分答案]

    题目传送门 运输计划 Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间, 这 n?1 条航道连通了 L 国的所 ...

  8. 【洛谷 P4211】[LNOI2014]LCA(树链剖分,差分)

    题目链接 看到题目肯定首先想到要求LCA(其实是我菜),可乍一看,n与q的规模为5W, 求LCA的复杂度为\(O(logN)\),那么总时间复杂度为\(O(nq\ log\ n)\). 怎么搞呢? 会 ...

  9. 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)

    题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...

随机推荐

  1. 卡尔曼滤波(Kalman Filter)

    一.引言 以下我们引用文献[1]中的一段话作为本文的開始: 想象你在黄昏时分看着一仅仅小鸟飞行穿过浓密的丛林.你仅仅能隐隐约约.断断续续地瞥见小鸟运动的闪现.你试图努力地猜測小鸟在哪里以及下一时刻它会 ...

  2. 剑指offer面试题14-调整数组顺序使奇数位于偶数前面

    题目: 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得全部奇数位于数组的前半部分.全部偶数位于数组的后半部分. 前后分的这个.,让我想起来高速排序.好吧,就用这个做. 考虑到了排序的可扩 ...

  3. 01_GIT基础、安装

     1 为什么选择GIT 分布式,强调个体 公共server压力和数据量都不会太大 速度快.灵活 随意两个开发人员之间能够非常easy的解决冲突 离线工作 每日工作备份 能够吃懊悔药 2  GIT基 ...

  4. ElasticSearch和ElasticSearch Head环境搭建和数据模拟

    首先elasticsearch-6.0.0\bin目录下运行elasticsearch服务 修改elasticsearch-6.0.0\elasticsearch.yml文件 在文件最后加入下面代码, ...

  5. 【转】Spring 中三种Bean配置方式比较

    今天被问到Spring中Bean的配置方式,很尴尬,只想到了基于XML的配置方式,其他的一时想不起来了,看来Spring的内容还没有完全梳理清楚,见到一篇不错的文章,就先转过来了. 以前Java框架基 ...

  6. 二、springcloud Netflix 注册中心

    Eureka是Netflix开源的一款提供服务注册和发现的产品,它提供了完整的Service Registry和Service Discovery实现.也是springcloud体系中最重要最核心的组 ...

  7. springmvc返回json字符串中文乱码问题

    问题: 后台代码如下: @RequestMapping("menuTreeAjax") @ResponseBody /** * 根据parentMenuId获取菜单的树结构 * @ ...

  8. WebGL学习(3) - 3D模型

      原文地址:WebGL学习(3) - 3D模型   相信很多人是以创建逼真酷炫的三维效果为目标而学习webGL的吧,首先我就是

  9. Spring框架(四)AOP面向切面编程

    一.前言 在以前的项目中,很少去关注spring aop的具体实现与理论,只是简单了解了一下什么是aop具体怎么用,看到了一篇博文写得还不错,就转载来学习一下,博文地址:http://www.cnbl ...

  10. ES6之Promise

    Promise是一个对象,用来传递异步操作的消息,他有两个特点:第一对象的状态不受外界的影响,第二一旦状态改变就不会在变,任何时候都可以得到这个结果,他有两个参数分别是resolve(他的作用是将Pr ...