题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372

题意:

  有n栋高楼横着排成一排,各自的高度为1到n的一个排列。

  从左边看可以看到f栋楼,从右边看可以看到b栋楼,并且高的楼会挡住低的楼。

  问你这些楼有多少种排列方法。

题解:

  由于高的楼会挡住低的楼,所以这些楼首先会被划分成f+b-2个区域(除去中间最高的楼),并且左边有f-1个,右边有b-1个。

  

  对于一个区域(假设在左边),这个区域由若干栋楼组成,并且最高的楼一定在最左边。

  那么,由一个区域中的元素组成的任意一个环排列,在这个区域中都有唯一的放法,因为要把最高的元素拉到最左边。

  

  所以,原题被简化为:将n-1个元素形成f+b-2个环排列,并将其中f-1个环放在左边的方法数。

  又是第一类Stirling数。

  · 将n-1个元素形成f+b-2个环排列的方法数 = S(n-1,f+b-2)

  · 将其中f-1个环放在左边的方法数 = C(f+b-2,f-1)

  所以答案为:S(n-1,f+b-2)*C(f+b-2,f-1)

  注:此题有不合法数据,要判断一下是否f+b-1>n,如果是,输出0(不合法)。

AC Code:

 // n: tot    f: lef    b: rig
// lef group = f-1
// rig group = b-1
// elem num = n-1
// circle num = f+b-2
// ans = s(n-1, f+b-2) * c(f+b-2, f-1)
// s(n,k) = s(n-1,k-1) + (n-1)*s(n-1,k) #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 2005
#define MOD 1000000007 using namespace std; int n,f,b,t;
long long s[MAX_N][MAX_N];
long long c[MAX_N][MAX_N]; void cal_stirling()
{
memset(s,,sizeof(s));
s[][]=;
for(int i=;i<MAX_N;i++)
{
s[i][i]=;
for(int j=;j<i;j++)
{
s[i][j]=(s[i-][j-]+(i-)*s[i-][j])%MOD;
}
}
} void cal_combination()
{
memset(c,,sizeof(c));
c[][]=;
for(int i=;i<MAX_N;i++)
{
c[i][]=;
for(int j=;j<=i;j++)
{
c[i][j]=(c[i-][j]+c[i-][j-])%MOD;
}
}
} int main()
{
cal_stirling();
cal_combination();
cin>>t;
for(int cas=;cas<=t;cas++)
{
cin>>n>>f>>b;
if(f+b-<=n) cout<<(s[n-][f+b-]*c[f+b-][f-])%MOD<<endl;
else cout<<<<endl;
}
}

HDU 4372 Count the Buildings:第一类Stirling数的更多相关文章

  1. HDU 4372 Count the Buildings [第一类斯特林数]

    有n(<=2000)栋楼排成一排,高度恰好是1至n且两两不同.现在从左侧看能看到f栋,从右边看能看到b栋,问有多少种可能方案. T组数据, (T<=100000) 自己只想出了用DP搞 发 ...

  2. HDU 4372 Count the Buildings——第一类斯特林数

    题目大意:n幢楼,从左边能看见f幢楼,右边能看见b幢楼 楼高是1~n的排列. 问楼的可能情况 把握看到楼的本质! 最高的一定能看见! 计数问题要向组合数学或者dp靠拢.但是这个题询问又很多,难以dp ...

  3. hdu 4372 Count the Buildings 轮换斯特林数

    题目大意 n栋楼有n个不同的高度 现在限制从前面看有F个点,后面看有B个点 分析 最高那栋楼哪都可以看到 剩下的可以最高那栋楼前面分出F-1个组 后面分出B-1个组 每个组的权值定义为组内最高楼的高度 ...

  4. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  5. HDU 4372 - Count the Buildings(组合计数)

    首先想过n^3的组合方法,即f(i,j,k)=f(i-1,j,k)*(i-2)+f(i-1,j-1,k)+f(i-1,j,k-1),肯定搞不定 然后想了好久没有效果,就去逛大神博客了,结果发现需要用到 ...

  6. hdu 4372 Count the Buildings —— 思路+第一类斯特林数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4372 首先,最高的会被看见: 然后考虑剩下 \( x+y-2 \) 个被看见的,每个带了一群被它挡住的楼, ...

  7. HDU 4372 Count the Buildings

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  8. HDU 4372 Count the Buildings 组合数学

    题意:有n个点上可能有楼房,从前面可以看到x栋楼,从后面可以看到y栋,问楼的位置有多少种可能. 印象中好像做过这个题,

  9. hdu 4372 第一类stirling数的应用/。。。好题

    /** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...

随机推荐

  1. 读RCNN论文笔记

    1. RCNN的模型(如下图)描述: RCNN相比传统的物体检测,还是引入传统的物体检测的基本流程,先找出候选目标物体,逐个的提取特征,不过rbg大神引入了当时炙手可热的CNN卷积网络取代传统上的HO ...

  2. 第一个SpringMVC实例和解析(HelloSpringMVC)

    1. 开发步骤: (1)增加Spring支持 下载Spring安装包和其依赖的commons-logging.jar,复制到项目Web应用的lib文件夹(WebRoot/WEB-INF/lib): S ...

  3. 简约的HTML5音乐播放器插件

    从我刚开始接触前端的时候就想写一个能播放音乐的小程序,刚开始写的时候虽然可以放,但是确实很慢,很卡,有很多可以优化的地方.最近在前一个版本的基础上重写了一个音乐播放器的插件,速度还可以吧 因为追求简约 ...

  4. ES6的转换器

    ---恢复内容开始--- ES6代码转为ES5代码的转换器 1.Babel 2.Traceur,Google公司出品 Babel是一个广泛使用的ES6转码器,可以将ES6代码转为ES5代码,从而在现有 ...

  5. VB6之ICMP实现ping功能

    代码备忘 'code by lichmama from cnblogs.com Private Type IPAddr ip1 As Byte ip2 As Byte ip3 As Byte ip4 ...

  6. 关于JAVA正则匹配空白字符的问题

    今天遇到一个字符串,怎么匹配空格都不成功!!! 我把空格复制到test.properties文件 显示“\u3000” ,这是什么? 这是全角空格!!! 查了一下    \s    不支持全角 1.& ...

  7. Unity-Shader-动态阴影(上) 投影的矩阵变换过程

    [旧博客转移 - 2017年1月20日 01:20 ] 前面的话 最近很长时间没写博文了,一是太忙 ( lan ) 了,二是这段时间又领悟了一些东西,脑子里很混乱,不知道从何写起.但感觉不能再拖延下去 ...

  8. Kafka基础知识

    1. kafka是一个分布式的消息发布-订阅队列.2. 其中有一些主要的概念: Topic: 就是对放入队列的消息进行分类,分类消息分开储存,比如现在有订单消息和用户投诉消息,则分成订单topic和投 ...

  9. JavaScript一个函数式编程-------求标准差

    利用JavaScript中的map函数和reduce函数实现函数式编程. 注意: 输出都在浏览器的控制台中. 代码如下: <script type="text/javascript&q ...

  10. 全网首创ISE入门级教程

    转眼间我已经大三了,现在成为了实验室的负责人,对于下一届学生的纳新重任就交到了我的手上,想采取不同的方法暑假尽可能对他们进行一些培训,所以制作了此教程,说实话,在网上还没有找到关于ISE的入门级使用教 ...