Caffe使用经验积累

本贴记录Caffe编译好了,使用过程的常用命令与常见错误解决方式。如果对编译过程还存在问题,请参考史上最全的caffe安装过程配置Caffe环境。

1 使用方法

训练网络

xxx/caffe/build/tools/caffe train --solver xx/solver.prototxt

选择某个模型作为预训练模型

xxx/caffe/build/tools/caffe train --solver solver.protxt --weights pre_training.caffemodel

继续之前的状态续训

xxx/caffe/build/tools/caffe train --solver solver.protxt --snapshot=train_iter_95000.solverstate

画出网络结构

python /caffe/python/draw_net.py train_alex.prototxt alexnet.png

选择多gpu进行训练

xxx/caffe/build/tools/caffe train --solver xx/solver.prototxt --gpu=0,1

设置系统环境变量使所需GPU可见

export CUDA_VISIBLE_DEVICES=1

训练log保存

nohup xxx/caffe/build/tools/caffe train –solver solver.prototxt	&
tail –f output

查看log中训练loss的值

cat output.log | grep "Train net output" | awk '{print $11}' > loss.log

其中,awk的 ‘{print $11}’ 是用来截取串中的第11个子串

2 常见使用过程报错含义

(1) errror: Check failed: error == cudaSuccess (2 vs. 0) out of memory

说明GPU内存不够用了,减少batch_size即可,参考

(2) error: ImportError: No module named pydot when python draw_net.py train_val.prototxt xxx.png

使用draw_net.py画图时所报的错误,需要安装graphviz

pip install pydot
pip install GraphViz
sudo apt-get install graphviz

(3) error: Cannot copy param 0 weights from layer 'fc8'; shape mismatch.

Source param shape is 5 4096 (20480); target param shape is 1000 4096 (4096000). To learn this layer's parameters from scratch rather than copying from a saved net, rename the layer.

出现这个问题一般是层与层的之前blob维度对应不上,需要改prototxt

change deploy.prototxt	adapt to train_val.prototxt

(4) error: Use hdf5 as caffe input, error: HDF5Data does not transform data

transform_param { scale: 0.00392156862745098 }

这句是说如果HDF5作为输入图像,不支持scale操作,把它注释就好了

Reference

(5) error: Loading list of HDF5 filenames from: failed to open source file

Read hdf5 data failed:

  1. source中 .txt位置用绝对路径
  2. .txt中.h5文件的要用绝对路径
  3. .prototxt中应该是:hdf5_data_param {}而非data_param{}

(6) error: Top blob 'data' produced by multiple sources.

检查数据输入层是不是多了 一层,比如定义了两遍’data’

(7) Error: Check failed: shape[i] >= 0 (-1 vs. 0)

  1. 数据维度顺序不对, blobs的顺序: [ 图像数量 N *通道数 C *图像高度 H *图像宽度 W ]
  2. kernerl size 与 feature map的大小不对应

(8) Error: Check failed: outer_num_ * inner_num_ == bottom[1]->count() (128 vs 128x51)

这层是accuracy layer出现的问题,检测accuracy的两个bottom的维度是否对应,实在解决不了的话,直接去掉。

[Caffe]使用经验积累的更多相关文章

  1. git日常使用经验积累

    1 git merge origin/develop 将远程分支合并到本地,一般先执行合并,解决冲突,然后再git commit合入新建的分支,推送到远程分支里面,最后码云上找pl pull requ ...

  2. 人工智能深度学习Caffe框架介绍,优秀的深度学习架构

    人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...

  3. 安装Caffe纪实

    第一章 引言 在ubuntu16.04安装caffe,几乎折腾了一个月终于成功;做一文章做纪要,以便日后查阅.总体得出的要点是:首先,每操作一步,必须知道如何检验操作的正确性;笔者的多次失误是因为配置 ...

  4. 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

    http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...

  5. caffe代码阅读10:Caffe中卷积的实现细节(涉及到BaseConvolutionLayer、ConvolutionLayer、im2col等)-2016.4.3

    一. 卷积层的作用简单介绍 卷积层是深度神经网络中的一个重要的层,该层实现了局部感受野.通过这样的局部感受野,能够有效地减少參数的数目. 我们将结合caffe来解说详细是怎样实现卷积层的前传和反传的. ...

  6. 基于window7+caffe实现图像艺术风格转换style-transfer

    这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现 ...

  7. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  8. 《Effective Java》学习笔记——积累和激励

    从一个实际案例说起 国庆长假前一个礼拜,老大给我分配了这么一个bug,就是打印出来的报表数量为整数的,有的带小数位,有的不带,毫无规律. 根据短短的两个多月的工作经验以及猜测,最终把范围缩小到以下这段 ...

  9. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

随机推荐

  1. JavaScript语法基础(1)

    1.JavaScript是什么? 1)定义: JavaScript「JS」是一种高级的.动态的. 弱类型的.解释型的计算机编程脚本语言. 2)原理: 3)组成: 3大部分: ◆ ECMAScript: ...

  2. JSON的详细介绍

    JSON的语法可以表示以下三种类型的值: 简单值:可以表示字符串,数值,布尔值,null,但不支持undefined. 对象(Object):对象作为一种复杂数据类型,表示的是一组无序的键值对儿. 数 ...

  3. PHP删除文件夹及其文件

    <?php function deletedir($path){ $openpath = opendir($path); while ($f = readdir($openpath)){ $fi ...

  4. (转)Linux(Centos)之安装Java JDK及注意事项

    场景:天下事有难易乎?为之,则难者亦易矣:不为,则易者亦难矣.人之为学有难易乎?学之,则难者亦易矣:不学,则易者亦难矣. 1 准备工作 下面配置jdk的方式在具有root权限时候能够执行.如果没有ro ...

  5. Python-cookies

    附新手工具: python新手工具下载链接:http://pan.baidu.com/s/1eS8WMR4 密码:7eso 注册码:http://idea.liyang.io py和编辑器安装教程链接 ...

  6. Linux基本命令整理_sheng

    Linux版本 Linux系统是一个多用户.多任务的分时操作系统. Linux版本分为内核版本和发行版本. 常见的Linux发行版有: RedHat(分为用于企业的Red Hat Enterprise ...

  7. Linux(6)文件和磁盘管理

    文件和磁盘管理 1. 文件管理ls ls : 查看文件信息. 列出目录的内容 -a :显示指定目录下的所有文件, 包括以.开头的隐藏文件 -l :以列表方式显示文件的详细信息 -h :配合-l显示文件 ...

  8. testbench中$display查看例化model里面信号方法以及$realtime用法

    前言 此为测试语法,不可综合: 流程: 1.在tb中可以这么写,检测clk_t_en的高电平,输出仿真时间位置,想查看的cnt_t是底层模块中的.这么会使得时间延迟一个周期: always @(pos ...

  9. 易云捷讯MySQL云数据库上线,推进IaaS与PaaS融合战略布局

    日前宣布,其基于MySQL的关系型云数据库已经正式上线公测,用户可通过易云管理控制台创建.监控与管理mysql数据库.此服务包括在线扩容.自动备份.灵活配置和监控告警等功能,旨在帮助用户实现便捷的运维 ...

  10. angular学习(三)-- $scope

    1.3 视图数据模型:$scope $scope 是用来视图和数据之间的胶水.粘合剂 视图和控制器之间的数据桥梁 用于在视图和控制器之间传递数据 用来暴露数据模型(数据.行为) 监视模型数据的变化,做 ...