向老师给的模拟赛,还没普及组难...

题目在洛谷团队里。

第一试三道水题,我46分钟就打完了,然后就AK了。

第二试一看,除了第二题要思考一段时间之外,还是比较水的,但是我得了Rank倒1,115分......

D1T1有个技巧,每次从堆中取出合并的时候顺便统计答案,相当于每一层的贡献分开来统计。

这个技巧来源于荷马史诗。

D2T2乍一看很难。答案不满足单调性所以不能二分。

因为边权在变,所以很难搞。同时这个也是突破口。

如果能够确定一个时刻,那么就最大生成树。

如果能确定一个生成树,那么可以发现边权和变化是一次函数。

生成树数量过多,不能枚举,但是时刻只有[0, 14400],考虑枚举时刻。

这样我们就要证明,最大的生成树所在时刻必须为整数。(证明在下面)

时间复杂度有点高,可能会超时。

进一步可以证明出,最大的生成树的所在时刻必定是某条边权最大的时刻ti

然后枚举ti求最大生成树,取最大值即可。

证明:

最大的生成树的所在时刻必定是某个生成树的最大时刻。

即证每个生成树的最大时刻必定是某个ti

每个生成树在两个ti之间的边权和是一个一次函数,最值在两端。

证毕。

然后我得了5分,理由是快读没写负数读入......

D2T3 一眼看上去是图论的奇技淫巧,然后发现只有几百个点,然后就想到了DP。

然后就写了个DP,得了10分,理由是最后输出的状态,一个变量错了。

总结:快读记得要处理负数。变量的意义最好用自己熟悉的,不熟悉的可以记下来。

NOIP2018普及组模拟赛的更多相关文章

  1. ZROI 普及组模拟赛02总结

    ZROI 普及组模拟赛02总结 先放[网址][http://zhengruioi.com/contest/96] 可能是有一段时间没有打这种正式的比赛了,今天打的很奇怪... T1 模拟水题 既然是普 ...

  2. 2017.1.16【初中部 】普及组模拟赛C组总结

    2017.1.16[初中部 ]普及组模拟赛C组 这次总结我赶时间,不写这么详细了. 话说这次比赛,我虽然翻了个大车,但一天之内AK,我感到很高兴 比赛 0+15+0+100=115 改题 AK 一.c ...

  3. nowcoder(牛客网)普及组模拟赛第一场 解题报告

    蒟蒻我可能考了一场假试 T1 绩点 这题没什么好说的,应该是只要会语言的就会做. T2 巨大的棋盘 一个模拟题吧qwq,但是要注意取模的时候先加上n或者m再取模,要不然会错的. #include< ...

  4. 【有奖】NOIP普及组模拟赛 个人邀请赛 乐多赛

    题目描述 日本数学家角谷有一个猜想:任意一个自然数,经过以下过程,最终会得到1.现在请你打印出任意一个数使用角谷猜想转换为1需要几次. 演变方式: 1.如果这个数为奇数,则将它×3+1.如果这个数为偶 ...

  5. NOIP2018普及组初赛解题报告

    本蒟蒻参加了今年的NOIP2018普及组的初赛 感觉要凉 总而言之,今年的题要说完全没有难度倒也不至于,还有不少拼RP的题,比如第一次问题求解考逻辑推理,第一次完善程序考双链表等 下面我就和大家一起看 ...

  6. 52-2018 蓝桥杯省赛 B 组模拟赛(一)java

    最近蒜头君喜欢上了U型数字,所谓U型数字,就是这个数字的每一位先严格单调递减,后严格单调递增.比如 212212 就是一个U型数字,但是 333333, 9898, 567567, 313133131 ...

  7. ZROI提高组模拟赛05总结

    ZROI提高组模拟赛05总结 感觉是目前为止最简单的模拟赛了吧 但是依旧不尽人意... T1 有一半的人在30min前就A掉了 而我花了1h11min 就是一个简单的背包,我硬是转化了模型想了好久,生 ...

  8. NOIP2017提高组 模拟赛15(总结)

    NOIP2017提高组 模拟赛15(总结) 第一题 讨厌整除的小明 [题目描述] 小明作为一个数学迷,总会出于数字的一些性质喜欢上某个数字,然而当他喜欢数字k的时候,却十分讨厌那些能够整除k而比k小的 ...

  9. NOIP2017提高组 模拟赛13(总结)

    NOIP2017提高组 模拟赛13(总结) 第一题 函数 [题目描述] [输入格式] 三个整数. 1≤t<10^9+7,2≤l≤r≤5*10^6 [输出格式] 一个整数. [输出样例] 2 2 ...

随机推荐

  1. SqlBulkCopy简单封装,让批量插入更方便

    关于 SqlServer 批量插入的方式,前段时间也有大神给出了好几种批量插入的方式及对比测试(http://www.cnblogs.com/jiekzou/p/6145550.html),估计大家也 ...

  2. python爬虫xpath的语法

    有朋友问我正则,,okey,其实我的正则也不好,但是python下xpath是相对较简单的 简单了解一下xpath: XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML ...

  3. 【nodejs】让nodejs像后端mvc框架(asp.net mvc)一样处理请求--控制器和处理函数的注册篇(4/8)【controller+action】

    文章目录 前情概要 前边的文章把一些基本的前置任务都完成了.接下就是比较重要的处理函数action是如何自动发现和注册的拉,也就是入口函数RouteHandler(也是我们的第一个express中间件 ...

  4. React.js 开发参见问题 Q&A

    文章中我整理了 React.js 开发过程中一些参见问题的解答汇总,供大家参考. 1. 一些课程资源 课程完整的思维导图请查考文章:React.js 入门与实战课程思维导图,我使用的思维导图软件是 M ...

  5. vs2017+opencv4.0.1安装配置详解(win10)

    一.说明 笔者之前已经安装过了vs2017,对应的opencv是3.4.0版本的.但现在想体验下opencv4的改变之处,所以下载了最新的opencv4.0.1. vs2017的安装请自行搜索安装,本 ...

  6. A. A Prank

    题意 有数列从小到大排列,都是不同范围1~ 1000,问你最多去掉多少个数字还能复原 由于wrong很多发所以写一下 链接 [http://codeforces.com/contest/1062/pr ...

  7. 实现基于SSH的门票管理系统开发的质量属性

    我要做的是一个基于SSH的门票售卖系统,在系统中常见的质量属性有:可用性.可修改性.性能.安全性.易用性. 可用性方面: 可用性是指系统正常运行时间的比例,是通过两次故障之间的时间长度或在系统崩溃情况 ...

  8. 20150401 作业2 结对 四则运算(Doing)

    import java.util.ArrayList; import java.util.Random; import java.util.Scanner; public class SE2_1 {/ ...

  9. QT应用在windows和Linux平台的发布指南

    环境:QT5.4 Windows下Qt应用的发布 Qt安装路径为:C:\Qt\Qt5.4.0\5.4\mingw491_32\bin 首先确保这个路径不在环境变量中,否则可能不成功. 执行" ...

  10. scipy的一些函数名

    rvs:随机变量pdf:概率密度函数cdf:累计分布函数sf:残存函数(1-CDF)ppf:分位点函数(CDF的逆)isf:逆残存函数(sf的逆)stats:返回均值,方差,(费舍尔)偏态,(费舍尔) ...