解:

神奇的一批......参观yyb巨神的博客

大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积。

然后发现有个地方我们除法的除数是乘积,于是换元枚举那个乘积。提到最前面。

稍微化一下,发现后面有个Id * miu,这个东西化成phi。

然后得到一个式子,前半部分是s2(n/i)这个整除分块,后面就要相应的求这个东西i2phi[i]的前缀和来迎合整除分块。

然后就是杜教筛,先设个g,把h(n)写出来发现要消掉一个d2,于是g(x) = x2

没了。

 #include <cstdio>
#include <map> typedef long long LL;
const int N = , T = ; LL MO; inline LL qpow(LL a, LL b) {
LL ans = ;
while(b) {
if(b & ) ans = ans * a % MO;
a = a * a % MO;
b = b >> ;
}
return ans;
} std::map<LL, LL> mp;
int p[N], top, phi[N];
LL F[N], inv2, inv6;
bool vis[N]; inline void getp(int n) {
phi[] = ;
for(int i = ; i <= n; i++) {
if(!vis[i]) {
p[++top] = i;
phi[i] = i - ;
}
for(int j = ; j <= top && i * p[j] <= n; j++) {
vis[i * p[j]] = ;
if(i % p[j] == ) {
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - );
}
}
for(int i = ; i <= n; i++) {
F[i] = (F[i - ] + (1ll * i * i % MO * phi[i] % MO)) % MO;
}
return;
} inline LL s2(LL x) { /// sum[1~n] ^ 2
x %= MO;
LL temp = (x + ) * x / % MO;
return temp * temp % MO;
} inline LL H(LL x) { /// sum of n^3
return s2(x);
} inline LL G(LL x) { /// sum of n^2
x %= MO;
return (x << | ) % MO * (x + ) % MO * x % MO * inv6 % MO;
} LL getF(LL x) {
if(x <= ) return ;
if(x <= T) return F[x];
if(mp.count(x)) return mp[x];
LL ans = H(x);
for(LL i = , j; i <= x; i = j + ) {
j = x / (x / i);
ans -= (G(j) - G(i - ) + MO) % MO * getF(x / i) % MO;
ans = (ans % MO + MO) % MO;
}
return mp[x] = ans;
} int main() {
LL n;
scanf("%lld%lld", &MO, &n);
getp(T);
inv6 = qpow(, MO - );
inv2 = (MO + ) / ; LL ans = ;
for(LL i = , j; i <= n; i = j + ) {
j = n / (n / i);
ans += s2(n / i) * (getF(j) - getF(i - ) + MO) % MO;
ans = (ans % MO + MO) % MO;
}
printf("%lld\n", ans);
return ;
}

AC代码

洛谷P3768 简单的数学题的更多相关文章

  1. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  2. 【刷题】洛谷 P3768 简单的数学题

    题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...

  3. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  4. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  5. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

  6. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  7. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  8. 洛谷 P3768 简单的数学题 (莫比乌斯反演)

    题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...

  9. 洛谷P3768 简单的数学题解题报告

    $$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\su ...

随机推荐

  1. Vue2.0 搭配 axios

    1.安装axios $ npm install axios 2.Demo (1)Get // 为给定 ID 的 user 创建请求 axios.get('/user?ID=12345') .then( ...

  2. kill方法

    删除磁盘上的文件. 语法 Kill 路径名 所需的_路径名_参数是一个字符串表达式,指定要删除的一个或多个文件名. _Pathname_可能包括驱动器和目录或文件夹. 例子删除当前路径下的TXT文档 ...

  3. Week 1 工程表格

    PSP2.1 Personal Software Process Stages Time Planning 计划 · Estimate · 估计这个任务需要多少时间 6h30min Developme ...

  4. linux第四次读书笔记

    第四章:进程调度 一.多任务 1.非抢占式多任务 进程会一直执行直到自己主动停止运行(这一步骤称为让步) 2.抢占式多任务 Linux/Unix使用的是抢占式的方式:强制的挂起进程的动作就叫做抢占.进 ...

  5. 第三周Linux学习报告

    Linux内核源代码简介: arch/x86中内容重点关注 init目录重要,内核启动相关的代码基本上都在init目录下.如main.c等.Start_kernel函数相当于普通C程序的main函数. ...

  6. 使用代理创建连接池 proxyPool

    配置文件properties url=jdbc:mysql://127.0.0.1:3306/mine?characterEncoding=UTF-8 user=root password=1234 ...

  7. React16新特性

    React的16版本采用了MIT开源许可证,新增了一些特性. Error Boundary render方法新增返回类型 Portals 支持自定义DOM属性 setState传入null时不会再触发 ...

  8. Beta阶段敏捷冲刺四

    一.举行站立式会议 1.当天站立式会议照片一张 2.团队成员报告 林楚虹 (1) 昨天已完成的工作:导入到数据表 (2) 今天计划完成的工作:排行榜功能 (3) 工作中遇到的困难:转为csv文件时音标 ...

  9. 被辞退时N+1的说法

    “N+”,指在这家公司工作了N年,赔偿N个月的上年平均工资,再加上1个月“代通知金”. N的上限时12: 上年平均工资的上限是工作所在城市平均工资的三倍. StudyFrom知乎 所以很明显能够算出来 ...

  10. calico实现docker容器内部的网络链接

    calico官网 https://www.projectcalico.org// calico介绍 http://www.sdnlab.com/17161.html calico网络 环境 系统   ...