A1101. Quick Sort
There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?
For example, given N = 5 and the numbers 1, 3, 2, 4, and 5. We have:
- 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
- 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
- 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
and for the similar reason, 4 and 5 could also be the pivot.
Hence in total there are 3 pivot candidates.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 105). Then the next line contains N distinct positive integers no larger than 109. The numbers in a line are separated by spaces.
Output Specification:
For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.
Sample Input:
5
1 3 2 4 5
Sample Output:
3
1 4 5
#include<cstdio>
#include<iostream>
#include<limits.h>
using namespace std;
int num[], L[] = {,}, R[] = {,};
int main(){
int N, max = -, cnt = , index = -;
scanf("%d", &N);
for(int i = ; i < N; i++){
scanf("%d", &num[i]);
}
for(int i = ; i < N; i++){
if(num[i] > max){
max = num[i];
L[i] = ;
}
}
int min = INT_MAX;
for(int i = N - ; i >= ; i--){
if(num[i] < min){
min = num[i];
R[i] = ;
}
}
for(int i = ; i < N; i++){
if(L[i] && R[i]){
cnt++;
}
if(L[i] && R[i] && index == -){
index = i;
}
}
if(cnt == )
printf("%d\n\n", cnt);
else
printf("%d\n%d", cnt, num[index]);
for(int i = index + ; i < N; i++){
if(L[i] && R[i])
printf(" %d", num[i]);
}
cin >> N;
return ;
}
总结:
1、与上一题一样的做法。注意无解的情况,应输出2个\n,以表示输出了2行, 否则会报格式错误。
2、注意min和max的初始值,输入的数字可能很大,最好让min和max在long long的范围足够小和足够大。
A1101. Quick Sort的更多相关文章
- PAT甲级——A1101 Quick Sort
There is a classical process named partition in the famous quick sort algorithm. In this process we ...
- 【刷题-PAT】A1101 Quick Sort (25 分)
1101 Quick Sort (25 分) There is a classical process named partition in the famous quick sort algorit ...
- A1101 Quick Sort (25 分)
一.技术总结 这里的一个关键就是理解调换位置排序是时,如果是元主,那么它要确保的条件就只有两个一个是,自己的位置不变,还有就是前面的元素不能有比自己大的. 二.参考代码 #include<ios ...
- PAT_A1101#Quick Sort
Source: PAT A1101 Quick Sort (25 分) Description: There is a classical process named partition in the ...
- [算法]——快速排序(Quick Sort)
顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...
- quick sort 的简化实现
Pivot 随机选取意义不大 第一种方法使用随机pivot,使得尽可能平均二分序列,而实际上一般来说需要排序的集合往往是乱序的,无需重新生成随机数作为pivot,大可使用固定位置的数作为pivot,这 ...
- 1101. Quick Sort (25)
There is a classical process named partition in the famous quick sort algorithm. In this process we ...
- [算法] 快速排序 Quick Sort
快速排序(Quick Sort)使用分治法策略. 它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分:其中一部分的所有数据都比另外一部分的所有数据都要小.然后,再按此方法对这 ...
- 基础排序算法之快速排序(Quick Sort)
快速排序(Quick Sort)同样是使用了分治法的思想,相比于其他的排序方法,它所用到的空间更少,因为其可以实现原地排序.同时如果随机选取中心枢(pivot),它也是一个随机算法.最重要的是,快速排 ...
随机推荐
- 如何手动写一个Python脚本自动爬取Bilibili小视频
如何手动写一个Python脚本自动爬取Bilibili小视频 国庆结束之余,某个不务正业的码农不好好干活,在B站瞎逛着,毕竟国庆嘛,还让不让人休息了诶-- 我身边的很多小伙伴们在朋友圈里面晒着出去游玩 ...
- Gitlab环境快速部署(RPM包方式安装)
之前梳理了一篇Gitlab的安装CI持续集成系统环境---部署Gitlab环境完整记录,但是这是bitnami一键安装的,版本比较老.下面介绍使用rpm包安装Gitlab,下载地址:https://m ...
- 《Linux内核设计与实现》读书笔记三
Chapter 18 调 试 18.1 准备开始 1.准备工作: 一个bug 一个藏匿bug的内核版本 相关内核代码的知识和运气 2.执行foo就会让程序立即产生核心信息转储(dump core). ...
- java中定时执行任务
现在项目中用到需要定时去检查文件是否更新的功能.timer正好用于此处. 用法很简单,new一个timer,然后写一个timertask的子类即可. 代码如下: package comz.autoup ...
- PAT L2-002 链表去重
https://pintia.cn/problem-sets/994805046380707840/problems/994805072641245184 给定一个带整数键值的链表 L,你需要把其中绝 ...
- 记Git报错-refusing to merge unrelated histories
记Git报错-refusing to merge unrelated histories 系统:win7 git版本: 2.16.2.windows.1 问题 1.本地初始化了git仓库,放了一些 ...
- DispatcherServlet源码分析
一.客户端发送请求的总体过程 DispatcherServlet是SpringMVC的入口,DispatcherServlet其实也是一个Servlet.服务器处理客户端请求的步骤如下: 1.客户端发 ...
- Babel安装在本地并用webstrom由ES6转Es5
1进入到根目录 2安装babel npm install babel-cli --save-dev 3安装其他库 npm install --save-dev babel-preset-env 4创 ...
- fasterxml.jackson 将对象转换为json报错处理
最近在做查询的数据遇到如下报错: com.fasterxml.jackson.databind.exc.InvalidDefinitionException: No serializer found ...
- JavaScript——闭包机制
闭包机制是JavaScript的重点和难点,本文希望能帮助大家轻松的学习闭包 一.什么是闭包? 闭包就是可以访问另一个函数作用域中变量的函数.下面列举出常见的闭包实现方式,以例子讲解闭包概念 func ...