There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N = 5 and the numbers 1, 3, 2, 4, and 5. We have:

  • 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
  • 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
  • 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;

and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<= 105). Then the next line contains N distinct positive integers no larger than 109. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:

5
1 3 2 4 5

Sample Output:

3
1 4 5  
 #include<cstdio>
#include<iostream>
#include<limits.h>
using namespace std;
int num[], L[] = {,}, R[] = {,};
int main(){
int N, max = -, cnt = , index = -;
scanf("%d", &N);
for(int i = ; i < N; i++){
scanf("%d", &num[i]);
}
for(int i = ; i < N; i++){
if(num[i] > max){
max = num[i];
L[i] = ;
}
}
int min = INT_MAX;
for(int i = N - ; i >= ; i--){
if(num[i] < min){
min = num[i];
R[i] = ;
}
}
for(int i = ; i < N; i++){
if(L[i] && R[i]){
cnt++;
}
if(L[i] && R[i] && index == -){
index = i;
}
}
if(cnt == )
printf("%d\n\n", cnt);
else
printf("%d\n%d", cnt, num[index]);
for(int i = index + ; i < N; i++){
if(L[i] && R[i])
printf(" %d", num[i]);
}
cin >> N;
return ;
}

总结:

1、与上一题一样的做法。注意无解的情况,应输出2个\n,以表示输出了2行, 否则会报格式错误。

2、注意min和max的初始值,输入的数字可能很大,最好让min和max在long long的范围足够小和足够大。

A1101. Quick Sort的更多相关文章

  1. PAT甲级——A1101 Quick Sort

    There is a classical process named partition in the famous quick sort algorithm. In this process we ...

  2. 【刷题-PAT】A1101 Quick Sort (25 分)

    1101 Quick Sort (25 分) There is a classical process named partition in the famous quick sort algorit ...

  3. A1101 Quick Sort (25 分)

    一.技术总结 这里的一个关键就是理解调换位置排序是时,如果是元主,那么它要确保的条件就只有两个一个是,自己的位置不变,还有就是前面的元素不能有比自己大的. 二.参考代码 #include<ios ...

  4. PAT_A1101#Quick Sort

    Source: PAT A1101 Quick Sort (25 分) Description: There is a classical process named partition in the ...

  5. [算法]——快速排序(Quick Sort)

    顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...

  6. quick sort 的简化实现

    Pivot 随机选取意义不大 第一种方法使用随机pivot,使得尽可能平均二分序列,而实际上一般来说需要排序的集合往往是乱序的,无需重新生成随机数作为pivot,大可使用固定位置的数作为pivot,这 ...

  7. 1101. Quick Sort (25)

    There is a classical process named partition in the famous quick sort algorithm. In this process we ...

  8. [算法] 快速排序 Quick Sort

    快速排序(Quick Sort)使用分治法策略. 它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分:其中一部分的所有数据都比另外一部分的所有数据都要小.然后,再按此方法对这 ...

  9. 基础排序算法之快速排序(Quick Sort)

    快速排序(Quick Sort)同样是使用了分治法的思想,相比于其他的排序方法,它所用到的空间更少,因为其可以实现原地排序.同时如果随机选取中心枢(pivot),它也是一个随机算法.最重要的是,快速排 ...

随机推荐

  1. testNG-失败用例重跑方法探究

    实现IRetryAnalyzer类,重写其中的retry方法public class TestNGRetry implements IRetryAnalyzer { private int retry ...

  2. Slurm任务调度系统部署和测试(源码)(1)

    1. 概述1.1 节点信息2. 节点准备3. 部署NTP服务器4. 部署LDAP服务器5. 部署Munge认证服务6. 部署Mysql数据库服务7. 部署slurm7.1 创建slurm用户7.2 挂 ...

  3. C/C++中连接函数strcat的应用(简单讲解)

    有位学弟问到我如何将两个字符连接起来,想想java/python里面可以直接用+连接起来,可是C/C++里面有没有这么方便的做法呢? 答案是有的,在C语言的string.h库中有个神奇的函数叫做str ...

  4. 普通程序员看k8s基于角色的访问控制(RBAC)

    一.知识准备 ● 上一节描述了k8s的账户管理,本文描述基于角色的访问控制 ● 网上RBAC的文章非常多,具体概念大神们也解释得很详细,本文没有站在高屋建瓴的角度去描述RBAC,而是站在一个普通程序员 ...

  5. Python数据类型-7

    什么数据类型. int 1,2,3用于计算. bool:True,False,用户判断. str:存储少量数据,进行操作 'fjdsal' '二哥','`13243','fdshklj' '战三,李四 ...

  6. C. Books Queries

    链接 [http://codeforces.com/contest/1066/problem/C] 题意 开始空队列,可以进行前插和后插,还可以查询使某个数的为最左或最右需要去掉的最少数字 分析 模拟 ...

  7. CF 910 C. Minimum Sum

    链接 [http://codeforces.com/group/1EzrFFyOc0/contest/910/problem/C] 题意 给你n个字符串,每个字符串的字符是a~j,每个字符都可以是0~ ...

  8. Linux内核分析 笔记八 进程的切换和系统的一般执行过程 ——by王玥

    一.进程切换的关键代码switch_to的分析 (一)进程调度与进程调度的时机分析 1.不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁地进行I/O,花费很多的时间等待I/O操作 ...

  9. org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure The last packet sent succ

    数据库 没有开启  连接失败 org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause ...

  10. Tomcat启动错误一例org.apache.catalina.core.StandardContext resources Start Error starting static Resources

    org.apache.catalina.core.StandardContext resources Start Error starting static Resources 引发原因:Eclips ...