1. Integer定义,final不可修改的类

     public final class Integer extends Number implements Comparable<Integer>
  2. 常量定义
         /**
    * A constant holding the minimum value an {@code int} can
    * have, -2<sup>31</sup>.
    */
    @Native public static final int MIN_VALUE = 0x80000000; /**
    * A constant holding the maximum value an {@code int} can
    * have, 2<sup>31</sup>-1.
    */
    @Native public static final int MAX_VALUE = 0x7fffffff; /**
    * The {@code Class} instance representing the primitive type
    * {@code int}.
    *
    * @since JDK1.1
    */
    @SuppressWarnings("unchecked")
    public static final Class<Integer> TYPE = (Class<Integer>) Class.getPrimitiveClass("int"); /**
    * All possible chars for representing a number as a String
    */
    final static char[] digits = {
    '0' , '1' , '2' , '3' , '4' , '5' ,
    '6' , '7' , '8' , '9' , 'a' , 'b' ,
    'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
    'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
    'o' , 'p' , 'q' , 'r' , 's' , 't' ,
    'u' , 'v' , 'w' , 'x' , 'y' , 'z'
    }; final static char [] DigitTens = {
    '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
    '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
    '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
    '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
    '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
    '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
    '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
    '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
    '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
    '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
    } ; final static char [] DigitOnes = {
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    } ;

    constant

    int表示的最大值MAX_VALUE,最小值负值MIN_VALUE,TYPE,digits的有效性数组定义。

  3. Integer的toString方法
         // 静态toString方法,radix为基数
    public static String toString(int i, int radix) {
    // 最小为2,最大36,范围外默认10
    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
    radix = 10; /* Use the faster version */
    if (radix == 10) {
    // toString 默认为10
    return toString(i);
    } // buf数组为int 目标char。长度33,因为int为8字节32位,多出来的是符号位
    char buf[] = new char[33];
    boolean negative = (i < 0);
    int charPos = 32; if (!negative) {
    i = -i;
    } while (i <= -radix) {
    buf[charPos--] = digits[-(i % radix)];
    i = i / radix;
    }
    // 将最后一个余数赋值
    buf[charPos] = digits[-i]; if (negative) {
    // 负数则需要把符号赋值最前面
    buf[--charPos] = '-';
    } // 使用char 加偏移进行String构建
    return new String(buf, charPos, (33 - charPos));
    } // 当int 无符号时,则可以表示long值,所以需要转long进行toStirng
    public static String toUnsignedString(int i, int radix) {
    return Long.toUnsignedString(toUnsignedLong(i), radix);
    } // 十六进制 toString, toUnsignedString0 的第二个参数是偏移量,4则为16进制
    public static String toHexString(int i) {
    return toUnsignedString0(i, 4);
    } // Octal 无符号的8进制
    public static String toOctalString(int i) {
    return toUnsignedString0(i, 3);
    } // Binary无符号的2进制
    public static String toBinaryString(int i) {
    return toUnsignedString0(i, 1);
    } // 私有无符号toString方法
    private static String toUnsignedString0(int val, int shift) {
    // assert shift > 0 && shift <=5 : "Illegal shift value";
    // 计算数值的字节数
    int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
    // 定义char 的长度
    int chars = Math.max(((mag + (shift - 1)) / shift), 1);
    char[] buf = new char[chars]; formatUnsignedInt(val, shift, buf, 0, chars); // Use special constructor which takes over "buf".
    return new String(buf, true);
    } /**
    * Format a long (treated as unsigned) into a character buffer.
    * @param val the unsigned int to format
    * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
    * @param buf the character buffer to write to
    * @param offset the offset in the destination buffer to start at
    * @param len the number of characters to write
    * @return the lowest character location used
    */
    static int formatUnsignedInt(int val, int shift, char[] buf, int offset, int len) {
    int charPos = len;
    int radix = 1 << shift;
    int mask = radix - 1;
    do {
    buf[offset + --charPos] = Integer.digits[val & mask];
    val >>>= shift;
    } while (val != 0 && charPos > 0); return charPos;
    } /**
    * Returns a {@code String} object representing the
    * specified integer. The argument is converted to signed decimal
    * representation and returned as a string, exactly as if the
    * argument and radix 10 were given as arguments to the {@link
    * #toString(int, int)} method.
    *
    * @param i an integer to be converted.
    * @return a string representation of the argument in base&nbsp;10.
    */
    // 使用10进制进行toString,有-符号。
    public static String toString(int i) {
    if (i == Integer.MIN_VALUE)
    return "-2147483648";
    int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
    char[] buf = new char[size];
    getChars(i, size, buf);
    return new String(buf, true);
    } public static String toUnsignedString(int i) {
    // 当int 无符号时,则可以表示long值,所以需要转long进行toStirng
    return Long.toString(toUnsignedLong(i));
    } /**
    * Places characters representing the integer i into the
    * character array buf. The characters are placed into
    * the buffer backwards starting with the least significant
    * digit at the specified index (exclusive), and working
    * backwards from there.
    *
    * Will fail if i == Integer.MIN_VALUE
    */
    static void getChars(int i, int index, char[] buf) {
    int q, r;
    int charPos = index;
    char sign = 0; if (i < 0) {
    sign = '-';
    i = -i;
    }
    // 两位两位进行转char操作
    // Generate two digits per iteration
    while (i >= 65536) {
    q = i / 100;
    // really: r = i - (q * 100);
    // * 100 拆解成 二进制运算
    r = i - ((q << 6) + (q << 5) + (q << 2));
    i = q;
    // 赋值 个位数
    buf [--charPos] = DigitOnes[r];
    // 赋值十位数
    buf [--charPos] = DigitTens[r];
    } // 处理一个字节的小数值
    // Fall thru to fast mode for smaller numbers
    // assert(i <= 65536, i);
    for (;;) {
    q = (i * 52429) >>> (16+3);
    r = i - ((q << 3) + (q << 1)); // r = i-(q*10) ...
    buf [--charPos] = digits [r];
    i = q;
    if (i == 0) break;
    }
    if (sign != 0) {
    buf [--charPos] = sign;
    }
    } // 使用数值对应索引来计算一个数需要多少长度char来表示
    final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
    99999999, 999999999, Integer.MAX_VALUE }; // Requires positive x
    static int stringSize(int x) {
    for (int i=0; ; i++)
    if (x <= sizeTable[i])
    return i+1;
    }

    toString

  4. parseInt方法
         /**
    * Parses the string argument as a signed integer in the radix
    * specified by the second argument. The characters in the string
    * must all be digits of the specified radix (as determined by
    * whether {@link java.lang.Character#digit(char, int)} returns a
    * nonnegative value), except that the first character may be an
    * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
    * indicate a negative value or an ASCII plus sign {@code '+'}
    * ({@code '\u005Cu002B'}) to indicate a positive value. The
    * resulting integer value is returned.
    *
    * <p>An exception of type {@code NumberFormatException} is
    * thrown if any of the following situations occurs:
    * <ul>
    * <li>The first argument is {@code null} or is a string of
    * length zero.
    *
    * <li>The radix is either smaller than
    * {@link java.lang.Character#MIN_RADIX} or
    * larger than {@link java.lang.Character#MAX_RADIX}.
    *
    * <li>Any character of the string is not a digit of the specified
    * radix, except that the first character may be a minus sign
    * {@code '-'} ({@code '\u005Cu002D'}) or plus sign
    * {@code '+'} ({@code '\u005Cu002B'}) provided that the
    * string is longer than length 1.
    *
    * <li>The value represented by the string is not a value of type
    * {@code int}.
    * </ul>
    *
    * <p>Examples:
    * <blockquote><pre>
    * parseInt("0", 10) returns 0
    * parseInt("473", 10) returns 473
    * parseInt("+42", 10) returns 42
    * parseInt("-0", 10) returns 0
    * parseInt("-FF", 16) returns -255
    * parseInt("1100110", 2) returns 102
    * parseInt("2147483647", 10) returns 2147483647
    * parseInt("-2147483648", 10) returns -2147483648
    * parseInt("2147483648", 10) throws a NumberFormatException
    * parseInt("99", 8) throws a NumberFormatException
    * parseInt("Kona", 10) throws a NumberFormatException
    * parseInt("Kona", 27) returns 411787
    * </pre></blockquote>
    *
    * @param s the {@code String} containing the integer
    * representation to be parsed
    * @param radix the radix to be used while parsing {@code s}.
    * @return the integer represented by the string argument in the
    * specified radix.
    * @exception NumberFormatException if the {@code String}
    * does not contain a parsable {@code int}.
    */
    public static int parseInt(String s, int radix)
    throws NumberFormatException
    {
    /*
    * WARNING: This method may be invoked early during VM initialization
    * before IntegerCache is initialized. Care must be taken to not use
    * the valueOf method.
    */ if (s == null) {
    throw new NumberFormatException("null");
    } if (radix < Character.MIN_RADIX) {
    throw new NumberFormatException("radix " + radix +
    " less than Character.MIN_RADIX");
    } if (radix > Character.MAX_RADIX) {
    throw new NumberFormatException("radix " + radix +
    " greater than Character.MAX_RADIX");
    } int result = 0;
    boolean negative = false;
    int i = 0, len = s.length();
    int limit = -Integer.MAX_VALUE;
    int multmin;
    int digit; if (len > 0) {
    char firstChar = s.charAt(0);
    if (firstChar < '0') { // Possible leading "+" or "-"
    if (firstChar == '-') {
    negative = true;
    limit = Integer.MIN_VALUE;
    } else if (firstChar != '+')
    throw NumberFormatException.forInputString(s); if (len == 1) // Cannot have lone "+" or "-"
    throw NumberFormatException.forInputString(s);
    i++;
    }
    multmin = limit / radix;
    while (i < len) {
    // Accumulating negatively avoids surprises near MAX_VALUE
    digit = Character.digit(s.charAt(i++),radix);
    if (digit < 0) {
    throw NumberFormatException.forInputString(s);
    }
    if (result < multmin) {
    throw NumberFormatException.forInputString(s);
    }
    result *= radix;
    if (result < limit + digit) {
    throw NumberFormatException.forInputString(s);
    }
    result -= digit;
    }
    } else {
    throw NumberFormatException.forInputString(s);
    }
    return negative ? result : -result;
    } /**
    * Parses the string argument as a signed decimal integer. The
    * characters in the string must all be decimal digits, except
    * that the first character may be an ASCII minus sign {@code '-'}
    * ({@code '\u005Cu002D'}) to indicate a negative value or an
    * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
    * indicate a positive value. The resulting integer value is
    * returned, exactly as if the argument and the radix 10 were
    * given as arguments to the {@link #parseInt(java.lang.String,
    * int)} method.
    *
    * @param s a {@code String} containing the {@code int}
    * representation to be parsed
    * @return the integer value represented by the argument in decimal.
    * @exception NumberFormatException if the string does not contain a
    * parsable integer.
    */
    public static int parseInt(String s) throws NumberFormatException {
    return parseInt(s,10);
    } /**
    * Parses the string argument as an unsigned integer in the radix
    * specified by the second argument. An unsigned integer maps the
    * values usually associated with negative numbers to positive
    * numbers larger than {@code MAX_VALUE}.
    *
    * The characters in the string must all be digits of the
    * specified radix (as determined by whether {@link
    * java.lang.Character#digit(char, int)} returns a nonnegative
    * value), except that the first character may be an ASCII plus
    * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
    * integer value is returned.
    *
    * <p>An exception of type {@code NumberFormatException} is
    * thrown if any of the following situations occurs:
    * <ul>
    * <li>The first argument is {@code null} or is a string of
    * length zero.
    *
    * <li>The radix is either smaller than
    * {@link java.lang.Character#MIN_RADIX} or
    * larger than {@link java.lang.Character#MAX_RADIX}.
    *
    * <li>Any character of the string is not a digit of the specified
    * radix, except that the first character may be a plus sign
    * {@code '+'} ({@code '\u005Cu002B'}) provided that the
    * string is longer than length 1.
    *
    * <li>The value represented by the string is larger than the
    * largest unsigned {@code int}, 2<sup>32</sup>-1.
    *
    * </ul>
    *
    *
    * @param s the {@code String} containing the unsigned integer
    * representation to be parsed
    * @param radix the radix to be used while parsing {@code s}.
    * @return the integer represented by the string argument in the
    * specified radix.
    * @throws NumberFormatException if the {@code String}
    * does not contain a parsable {@code int}.
    * @since 1.8
    */
    public static int parseUnsignedInt(String s, int radix)
    throws NumberFormatException {
    if (s == null) {
    throw new NumberFormatException("null");
    } int len = s.length();
    if (len > 0) {
    char firstChar = s.charAt(0);
    if (firstChar == '-') {
    throw new
    NumberFormatException(String.format("Illegal leading minus sign " +
    "on unsigned string %s.", s));
    } else {
    if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
    (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits
    return parseInt(s, radix);
    } else {
    long ell = Long.parseLong(s, radix);
    if ((ell & 0xffff_ffff_0000_0000L) == 0) {
    return (int) ell;
    } else {
    throw new
    NumberFormatException(String.format("String value %s exceeds " +
    "range of unsigned int.", s));
    }
    }
    }
    } else {
    throw NumberFormatException.forInputString(s);
    }
    } /**
    * Parses the string argument as an unsigned decimal integer. The
    * characters in the string must all be decimal digits, except
    * that the first character may be an an ASCII plus sign {@code
    * '+'} ({@code '\u005Cu002B'}). The resulting integer value
    * is returned, exactly as if the argument and the radix 10 were
    * given as arguments to the {@link
    * #parseUnsignedInt(java.lang.String, int)} method.
    *
    * @param s a {@code String} containing the unsigned {@code int}
    * representation to be parsed
    * @return the unsigned integer value represented by the argument in decimal.
    * @throws NumberFormatException if the string does not contain a
    * parsable unsigned integer.
    * @since 1.8
    */
    public static int parseUnsignedInt(String s) throws NumberFormatException {
    return parseUnsignedInt(s, 10);
    }

    parseInt

    若String为null,会抛出null 异常。要注意的是返回值为int,不是Integer对象。

  5. valueOf方法
     /**
    * Returns an {@code Integer} object holding the value
    * extracted from the specified {@code String} when parsed
    * with the radix given by the second argument. The first argument
    * is interpreted as representing a signed integer in the radix
    * specified by the second argument, exactly as if the arguments
    * were given to the {@link #parseInt(java.lang.String, int)}
    * method. The result is an {@code Integer} object that
    * represents the integer value specified by the string.
    *
    * <p>In other words, this method returns an {@code Integer}
    * object equal to the value of:
    *
    * <blockquote>
    * {@code new Integer(Integer.parseInt(s, radix))}
    * </blockquote>
    *
    * @param s the string to be parsed.
    * @param radix the radix to be used in interpreting {@code s}
    * @return an {@code Integer} object holding the value
    * represented by the string argument in the specified
    * radix.
    * @exception NumberFormatException if the {@code String}
    * does not contain a parsable {@code int}.
    */
    public static Integer valueOf(String s, int radix) throws NumberFormatException {
    return Integer.valueOf(parseInt(s,radix));
    } /**
    * Returns an {@code Integer} object holding the
    * value of the specified {@code String}. The argument is
    * interpreted as representing a signed decimal integer, exactly
    * as if the argument were given to the {@link
    * #parseInt(java.lang.String)} method. The result is an
    * {@code Integer} object that represents the integer value
    * specified by the string.
    *
    * <p>In other words, this method returns an {@code Integer}
    * object equal to the value of:
    *
    * <blockquote>
    * {@code new Integer(Integer.parseInt(s))}
    * </blockquote>
    *
    * @param s the string to be parsed.
    * @return an {@code Integer} object holding the value
    * represented by the string argument.
    * @exception NumberFormatException if the string cannot be parsed
    * as an integer.
    */
    public static Integer valueOf(String s) throws NumberFormatException {
    return Integer.valueOf(parseInt(s, 10));
    }

    valueOf

    valueOf默认是10进制有符号转换,原理也是parseInt,但是与parseInt不同的是 返回值为Integer

  6. Integer 的重要定义,IntegerCache 
     private static class IntegerCache {
    static final int low = -128;
    static final int high;
    static final Integer cache[]; static {
    // high value may be configured by property
    int h = 127;
    String integerCacheHighPropValue =
    sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
    if (integerCacheHighPropValue != null) {
    try {
    int i = parseInt(integerCacheHighPropValue);
    i = Math.max(i, 127);
    // Maximum array size is Integer.MAX_VALUE
    h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
    } catch( NumberFormatException nfe) {
    // If the property cannot be parsed into an int, ignore it.
    }
    }
    high = h; cache = new Integer[(high - low) + 1];
    int j = low;
    for(int k = 0; k < cache.length; k++)
    cache[k] = new Integer(j++); // range [-128, 127] must be interned (JLS7 5.1.7)
    assert IntegerCache.high >= 127;
    } private IntegerCache() {}
    } /**
    * Returns an {@code Integer} instance representing the specified
    * {@code int} value. If a new {@code Integer} instance is not
    * required, this method should generally be used in preference to
    * the constructor {@link #Integer(int)}, as this method is likely
    * to yield significantly better space and time performance by
    * caching frequently requested values.
    *
    * This method will always cache values in the range -128 to 127,
    * inclusive, and may cache other values outside of this range.
    *
    * @param i an {@code int} value.
    * @return an {@code Integer} instance representing {@code i}.
    * @since 1.5
    */
    public static Integer valueOf(int i) {
    if (i >= IntegerCache.low && i <= IntegerCache.high)
    return IntegerCache.cache[i + (-IntegerCache.low)];
    return new Integer(i);
    } /**
    * The value of the {@code Integer}.
    *
    * @serial
    */
    private final int value; /**
    * Constructs a newly allocated {@code Integer} object that
    * represents the specified {@code int} value.
    *
    * @param value the value to be represented by the
    * {@code Integer} object.
    */
    public Integer(int value) {
    this.value = value;
    } /**
    * Constructs a newly allocated {@code Integer} object that
    * represents the {@code int} value indicated by the
    * {@code String} parameter. The string is converted to an
    * {@code int} value in exactly the manner used by the
    * {@code parseInt} method for radix 10.
    *
    * @param s the {@code String} to be converted to an
    * {@code Integer}.
    * @exception NumberFormatException if the {@code String} does not
    * contain a parsable integer.
    * @see java.lang.Integer#parseInt(java.lang.String, int)
    */
    public Integer(String s) throws NumberFormatException {
    this.value = parseInt(s, 10);
    }

    IntegerCache 为Integer的缓冲池,当创建Integer对象时,若大小在-128~127之间,则先在缓冲池返回,若空则新建相应对象返回并进入缓冲池。
    从源码可以看出,最大值127是可以通过jvm启动设置进行修改。
    Integer i = 100; 直接赋值语句是自动装箱,原理就是 Integer.valueOf(int i);

  7. Integer实现
     /**
    * The value of the {@code Integer}.
    *
    * @serial
    */
    private final int value; /**
    * Constructs a newly allocated {@code Integer} object that
    * represents the specified {@code int} value.
    *
    * @param value the value to be represented by the
    * {@code Integer} object.
    */
    public Integer(int value) {
    this.value = value;
    } /**
    * Constructs a newly allocated {@code Integer} object that
    * represents the {@code int} value indicated by the
    * {@code String} parameter. The string is converted to an
    * {@code int} value in exactly the manner used by the
    * {@code parseInt} method for radix 10.
    *
    * @param s the {@code String} to be converted to an
    * {@code Integer}.
    * @exception NumberFormatException if the {@code String} does not
    * contain a parsable integer.
    * @see java.lang.Integer#parseInt(java.lang.String, int)
    */
    public Integer(String s) throws NumberFormatException {
    this.value = parseInt(s, 10);
    }

    value为final int,Integer 对象一旦创建不可改变。

  8. 转化int方法
     /**
    * Returns the value of this {@code Integer} as a {@code byte}
    * after a narrowing primitive conversion.
    * @jls 5.1.3 Narrowing Primitive Conversions
    */
    public byte byteValue() {
    return (byte)value;
    } /**
    * Returns the value of this {@code Integer} as a {@code short}
    * after a narrowing primitive conversion.
    * @jls 5.1.3 Narrowing Primitive Conversions
    */
    public short shortValue() {
    return (short)value;
    } /**
    * Returns the value of this {@code Integer} as an
    * {@code int}.
    */
    public int intValue() {
    return value;
    } /**
    * Returns the value of this {@code Integer} as a {@code long}
    * after a widening primitive conversion.
    * @jls 5.1.2 Widening Primitive Conversions
    * @see Integer#toUnsignedLong(int)
    */
    public long longValue() {
    return (long)value;
    } /**
    * Returns the value of this {@code Integer} as a {@code float}
    * after a widening primitive conversion.
    * @jls 5.1.2 Widening Primitive Conversions
    */
    public float floatValue() {
    return (float)value;
    } /**
    * Returns the value of this {@code Integer} as a {@code double}
    * after a widening primitive conversion.
    * @jls 5.1.2 Widening Primitive Conversions
    */
    public double doubleValue() {
    return (double)value;
    }

    usually

  9. 重写equals , hashcode,toString
     /**
    * Returns a {@code String} object representing this
    * {@code Integer}'s value. The value is converted to signed
    * decimal representation and returned as a string, exactly as if
    * the integer value were given as an argument to the {@link
    * java.lang.Integer#toString(int)} method.
    *
    * @return a string representation of the value of this object in
    * base&nbsp;10.
    */
    public String toString() {
    return toString(value);
    } /**
    * Returns a hash code for this {@code Integer}.
    *
    * @return a hash code value for this object, equal to the
    * primitive {@code int} value represented by this
    * {@code Integer} object.
    */
    @Override
    public int hashCode() {
    return Integer.hashCode(value);
    } /**
    * Returns a hash code for a {@code int} value; compatible with
    * {@code Integer.hashCode()}.
    *
    * @param value the value to hash
    * @since 1.8
    *
    * @return a hash code value for a {@code int} value.
    */
    public static int hashCode(int value) {
    return value;
    } /**
    * Compares this object to the specified object. The result is
    * {@code true} if and only if the argument is not
    * {@code null} and is an {@code Integer} object that
    * contains the same {@code int} value as this object.
    *
    * @param obj the object to compare with.
    * @return {@code true} if the objects are the same;
    * {@code false} otherwise.
    */
    public boolean equals(Object obj) {
    if (obj instanceof Integer) {
    return value == ((Integer)obj).intValue();
    }
    return false;
    }

    revide

  10. 获取系统properties Integer
     /**
    * Determines the integer value of the system property with the
    * specified name.
    *
    * <p>The first argument is treated as the name of a system
    * property. System properties are accessible through the {@link
    * java.lang.System#getProperty(java.lang.String)} method. The
    * string value of this property is then interpreted as an integer
    * value using the grammar supported by {@link Integer#decode decode} and
    * an {@code Integer} object representing this value is returned.
    *
    * <p>The second argument is the default value. An {@code Integer} object
    * that represents the value of the second argument is returned if there
    * is no property of the specified name, if the property does not have
    * the correct numeric format, or if the specified name is empty or
    * {@code null}.
    *
    * <p>In other words, this method returns an {@code Integer} object
    * equal to the value of:
    *
    * <blockquote>
    * {@code getInteger(nm, new Integer(val))}
    * </blockquote>
    *
    * but in practice it may be implemented in a manner such as:
    *
    * <blockquote><pre>
    * Integer result = getInteger(nm, null);
    * return (result == null) ? new Integer(val) : result;
    * </pre></blockquote>
    *
    * to avoid the unnecessary allocation of an {@code Integer}
    * object when the default value is not needed.
    *
    * @param nm property name.
    * @param val default value.
    * @return the {@code Integer} value of the property.
    * @throws SecurityException for the same reasons as
    * {@link System#getProperty(String) System.getProperty}
    * @see java.lang.System#getProperty(java.lang.String)
    * @see java.lang.System#getProperty(java.lang.String, java.lang.String)
    */
    public static Integer getInteger(String nm, int val) {
    Integer result = getInteger(nm, null);
    return (result == null) ? Integer.valueOf(val) : result;
    } /**
    * Returns the integer value of the system property with the
    * specified name. The first argument is treated as the name of a
    * system property. System properties are accessible through the
    * {@link java.lang.System#getProperty(java.lang.String)} method.
    * The string value of this property is then interpreted as an
    * integer value, as per the {@link Integer#decode decode} method,
    * and an {@code Integer} object representing this value is
    * returned; in summary:
    *
    * <ul><li>If the property value begins with the two ASCII characters
    * {@code 0x} or the ASCII character {@code #}, not
    * followed by a minus sign, then the rest of it is parsed as a
    * hexadecimal integer exactly as by the method
    * {@link #valueOf(java.lang.String, int)} with radix 16.
    * <li>If the property value begins with the ASCII character
    * {@code 0} followed by another character, it is parsed as an
    * octal integer exactly as by the method
    * {@link #valueOf(java.lang.String, int)} with radix 8.
    * <li>Otherwise, the property value is parsed as a decimal integer
    * exactly as by the method {@link #valueOf(java.lang.String, int)}
    * with radix 10.
    * </ul>
    *
    * <p>The second argument is the default value. The default value is
    * returned if there is no property of the specified name, if the
    * property does not have the correct numeric format, or if the
    * specified name is empty or {@code null}.
    *
    * @param nm property name.
    * @param val default value.
    * @return the {@code Integer} value of the property.
    * @throws SecurityException for the same reasons as
    * {@link System#getProperty(String) System.getProperty}
    * @see System#getProperty(java.lang.String)
    * @see System#getProperty(java.lang.String, java.lang.String)
    */
    public static Integer getInteger(String nm, Integer val) {
    String v = null;
    try {
    v = System.getProperty(nm);
    } catch (IllegalArgumentException | NullPointerException e) {
    }
    if (v != null) {
    try {
    return Integer.decode(v);
    } catch (NumberFormatException e) {
    }
    }
    return val;
    }

    getProperty

  11. decode,解析String的数值(二进制|八进制|十进制|十六进制)
     /**
    * Decodes a {@code String} into an {@code Integer}.
    * Accepts decimal, hexadecimal, and octal numbers given
    * by the following grammar:
    *
    * <blockquote>
    * <dl>
    * <dt><i>DecodableString:</i>
    * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
    * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
    *
    * <dt><i>Sign:</i>
    * <dd>{@code -}
    * <dd>{@code +}
    * </dl>
    * </blockquote>
    *
    * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
    * are as defined in section 3.10.1 of
    * <cite>The Java&trade; Language Specification</cite>,
    * except that underscores are not accepted between digits.
    *
    * <p>The sequence of characters following an optional
    * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
    * "{@code #}", or leading zero) is parsed as by the {@code
    * Integer.parseInt} method with the indicated radix (10, 16, or
    * 8). This sequence of characters must represent a positive
    * value or a {@link NumberFormatException} will be thrown. The
    * result is negated if first character of the specified {@code
    * String} is the minus sign. No whitespace characters are
    * permitted in the {@code String}.
    *
    * @param nm the {@code String} to decode.
    * @return an {@code Integer} object holding the {@code int}
    * value represented by {@code nm}
    * @exception NumberFormatException if the {@code String} does not
    * contain a parsable integer.
    * @see java.lang.Integer#parseInt(java.lang.String, int)
    */
    public static Integer decode(String nm) throws NumberFormatException {
    int radix = 10;
    int index = 0;
    boolean negative = false;
    Integer result; if (nm.length() == 0)
    throw new NumberFormatException("Zero length string");
    char firstChar = nm.charAt(0);
    // Handle sign, if present
    if (firstChar == '-') {
    negative = true;
    index++;
    } else if (firstChar == '+')
    index++; // Handle radix specifier, if present
    if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
    index += 2;
    radix = 16;
    }
    else if (nm.startsWith("#", index)) {
    index ++;
    radix = 16;
    }
    else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
    index ++;
    radix = 8;
    } if (nm.startsWith("-", index) || nm.startsWith("+", index))
    throw new NumberFormatException("Sign character in wrong position"); try {
    result = Integer.valueOf(nm.substring(index), radix);
    result = negative ? Integer.valueOf(-result.intValue()) : result;
    } catch (NumberFormatException e) {
    // If number is Integer.MIN_VALUE, we'll end up here. The next line
    // handles this case, and causes any genuine format error to be
    // rethrown.
    String constant = negative ? ("-" + nm.substring(index))
    : nm.substring(index);
    result = Integer.valueOf(constant, radix);
    }
    return result;
    }
  12. compareTo 方法,比较一定用 value,或者int值来进行大小比较
     /**
    * Compares two {@code Integer} objects numerically.
    *
    * @param anotherInteger the {@code Integer} to be compared.
    * @return the value {@code 0} if this {@code Integer} is
    * equal to the argument {@code Integer}; a value less than
    * {@code 0} if this {@code Integer} is numerically less
    * than the argument {@code Integer}; and a value greater
    * than {@code 0} if this {@code Integer} is numerically
    * greater than the argument {@code Integer} (signed
    * comparison).
    * @since 1.2
    */
    public int compareTo(Integer anotherInteger) {
    return compare(this.value, anotherInteger.value);
    } /**
    * Compares two {@code int} values numerically.
    * The value returned is identical to what would be returned by:
    * <pre>
    * Integer.valueOf(x).compareTo(Integer.valueOf(y))
    * </pre>
    *
    * @param x the first {@code int} to compare
    * @param y the second {@code int} to compare
    * @return the value {@code 0} if {@code x == y};
    * a value less than {@code 0} if {@code x < y}; and
    * a value greater than {@code 0} if {@code x > y}
    * @since 1.7
    */
    public static int compare(int x, int y) {
    return (x < y) ? -1 : ((x == y) ? 0 : 1);
    } /**
    * Compares two {@code int} values numerically treating the values
    * as unsigned.
    *
    * @param x the first {@code int} to compare
    * @param y the second {@code int} to compare
    * @return the value {@code 0} if {@code x == y}; a value less
    * than {@code 0} if {@code x < y} as unsigned values; and
    * a value greater than {@code 0} if {@code x > y} as
    * unsigned values
    * @since 1.8
    */
    public static int compareUnsigned(int x, int y) {
    return compare(x + MIN_VALUE, y + MIN_VALUE);
    }

    CompareTO

  13. Integer内置运算方法
         /**
    * Converts the argument to a {@code long} by an unsigned
    * conversion. In an unsigned conversion to a {@code long}, the
    * high-order 32 bits of the {@code long} are zero and the
    * low-order 32 bits are equal to the bits of the integer
    * argument.
    *
    * Consequently, zero and positive {@code int} values are mapped
    * to a numerically equal {@code long} value and negative {@code
    * int} values are mapped to a {@code long} value equal to the
    * input plus 2<sup>32</sup>.
    *
    * @param x the value to convert to an unsigned {@code long}
    * @return the argument converted to {@code long} by an unsigned
    * conversion
    * @since 1.8
    */
    public static long toUnsignedLong(int x) {
    return ((long) x) & 0xffffffffL;
    } /**
    * Returns the unsigned quotient of dividing the first argument by
    * the second where each argument and the result is interpreted as
    * an unsigned value.
    *
    * <p>Note that in two's complement arithmetic, the three other
    * basic arithmetic operations of add, subtract, and multiply are
    * bit-wise identical if the two operands are regarded as both
    * being signed or both being unsigned. Therefore separate {@code
    * addUnsigned}, etc. methods are not provided.
    *
    * @param dividend the value to be divided
    * @param divisor the value doing the dividing
    * @return the unsigned quotient of the first argument divided by
    * the second argument
    * @see #remainderUnsigned
    * @since 1.8
    */
    public static int divideUnsigned(int dividend, int divisor) {
    // In lieu of tricky code, for now just use long arithmetic.
    return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
    } /**
    * Returns the unsigned remainder from dividing the first argument
    * by the second where each argument and the result is interpreted
    * as an unsigned value.
    *
    * @param dividend the value to be divided
    * @param divisor the value doing the dividing
    * @return the unsigned remainder of the first argument divided by
    * the second argument
    * @see #divideUnsigned
    * @since 1.8
    */
    public static int remainderUnsigned(int dividend, int divisor) {
    // In lieu of tricky code, for now just use long arithmetic.
    return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
    } /**
    * Adds two integers together as per the + operator.
    *
    * @param a the first operand
    * @param b the second operand
    * @return the sum of {@code a} and {@code b}
    * @see java.util.function.BinaryOperator
    * @since 1.8
    */
    public static int sum(int a, int b) {
    return a + b;
    } /**
    * Returns the greater of two {@code int} values
    * as if by calling {@link Math#max(int, int) Math.max}.
    *
    * @param a the first operand
    * @param b the second operand
    * @return the greater of {@code a} and {@code b}
    * @see java.util.function.BinaryOperator
    * @since 1.8
    */
    public static int max(int a, int b) {
    return Math.max(a, b);
    } /**
    * Returns the smaller of two {@code int} values
    * as if by calling {@link Math#min(int, int) Math.min}.
    *
    * @param a the first operand
    * @param b the second operand
    * @return the smaller of {@code a} and {@code b}
    * @see java.util.function.BinaryOperator
    * @since 1.8
    */
    public static int min(int a, int b) {
    return Math.min(a, b);
    }

    calulator

  14. Integer  位相关方法
     /**
    * The number of bits used to represent an {@code int} value in two's
    * complement binary form.
    *
    * @since 1.5
    */
    @Native public static final int SIZE = 32; /**
    * The number of bytes used to represent a {@code int} value in two's
    * complement binary form.
    *
    * @since 1.8
    */
    public static final int BYTES = SIZE / Byte.SIZE; /**
    * Returns an {@code int} value with at most a single one-bit, in the
    * position of the highest-order ("leftmost") one-bit in the specified
    * {@code int} value. Returns zero if the specified value has no
    * one-bits in its two's complement binary representation, that is, if it
    * is equal to zero.
    *
    * @param i the value whose highest one bit is to be computed
    * @return an {@code int} value with a single one-bit, in the position
    * of the highest-order one-bit in the specified value, or zero if
    * the specified value is itself equal to zero.
    * @since 1.5
    */
    public static int highestOneBit(int i) {
    // HD, Figure 3-1
    i |= (i >> 1);
    i |= (i >> 2);
    i |= (i >> 4);
    i |= (i >> 8);
    i |= (i >> 16);
    return i - (i >>> 1);
    } /**
    * Returns an {@code int} value with at most a single one-bit, in the
    * position of the lowest-order ("rightmost") one-bit in the specified
    * {@code int} value. Returns zero if the specified value has no
    * one-bits in its two's complement binary representation, that is, if it
    * is equal to zero.
    *
    * @param i the value whose lowest one bit is to be computed
    * @return an {@code int} value with a single one-bit, in the position
    * of the lowest-order one-bit in the specified value, or zero if
    * the specified value is itself equal to zero.
    * @since 1.5
    */
    public static int lowestOneBit(int i) {
    // HD, Section 2-1
    return i & -i;
    } /**
    * Returns the number of zero bits preceding the highest-order
    * ("leftmost") one-bit in the two's complement binary representation
    * of the specified {@code int} value. Returns 32 if the
    * specified value has no one-bits in its two's complement representation,
    * in other words if it is equal to zero.
    *
    * <p>Note that this method is closely related to the logarithm base 2.
    * For all positive {@code int} values x:
    * <ul>
    * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
    * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
    * </ul>
    *
    * @param i the value whose number of leading zeros is to be computed
    * @return the number of zero bits preceding the highest-order
    * ("leftmost") one-bit in the two's complement binary representation
    * of the specified {@code int} value, or 32 if the value
    * is equal to zero.
    * @since 1.5
    */
    public static int numberOfLeadingZeros(int i) {
    // HD, Figure 5-6
    if (i == 0)
    return 32;
    int n = 1;
    if (i >>> 16 == 0) { n += 16; i <<= 16; }
    if (i >>> 24 == 0) { n += 8; i <<= 8; }
    if (i >>> 28 == 0) { n += 4; i <<= 4; }
    if (i >>> 30 == 0) { n += 2; i <<= 2; }
    n -= i >>> 31;
    return n;
    } /**
    * Returns the number of zero bits following the lowest-order ("rightmost")
    * one-bit in the two's complement binary representation of the specified
    * {@code int} value. Returns 32 if the specified value has no
    * one-bits in its two's complement representation, in other words if it is
    * equal to zero.
    *
    * @param i the value whose number of trailing zeros is to be computed
    * @return the number of zero bits following the lowest-order ("rightmost")
    * one-bit in the two's complement binary representation of the
    * specified {@code int} value, or 32 if the value is equal
    * to zero.
    * @since 1.5
    */
    public static int numberOfTrailingZeros(int i) {
    // HD, Figure 5-14
    int y;
    if (i == 0) return 32;
    int n = 31;
    y = i <<16; if (y != 0) { n = n -16; i = y; }
    y = i << 8; if (y != 0) { n = n - 8; i = y; }
    y = i << 4; if (y != 0) { n = n - 4; i = y; }
    y = i << 2; if (y != 0) { n = n - 2; i = y; }
    return n - ((i << 1) >>> 31);
    } /**
    * Returns the number of one-bits in the two's complement binary
    * representation of the specified {@code int} value. This function is
    * sometimes referred to as the <i>population count</i>.
    *
    * @param i the value whose bits are to be counted
    * @return the number of one-bits in the two's complement binary
    * representation of the specified {@code int} value.
    * @since 1.5
    */
    public static int bitCount(int i) {
    // HD, Figure 5-2
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
    } /**
    * Returns the value obtained by rotating the two's complement binary
    * representation of the specified {@code int} value left by the
    * specified number of bits. (Bits shifted out of the left hand, or
    * high-order, side reenter on the right, or low-order.)
    *
    * <p>Note that left rotation with a negative distance is equivalent to
    * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
    * distance)}. Note also that rotation by any multiple of 32 is a
    * no-op, so all but the last five bits of the rotation distance can be
    * ignored, even if the distance is negative: {@code rotateLeft(val,
    * distance) == rotateLeft(val, distance & 0x1F)}.
    *
    * @param i the value whose bits are to be rotated left
    * @param distance the number of bit positions to rotate left
    * @return the value obtained by rotating the two's complement binary
    * representation of the specified {@code int} value left by the
    * specified number of bits.
    * @since 1.5
    */
    public static int rotateLeft(int i, int distance) {
    return (i << distance) | (i >>> -distance);
    } /**
    * Returns the value obtained by rotating the two's complement binary
    * representation of the specified {@code int} value right by the
    * specified number of bits. (Bits shifted out of the right hand, or
    * low-order, side reenter on the left, or high-order.)
    *
    * <p>Note that right rotation with a negative distance is equivalent to
    * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
    * distance)}. Note also that rotation by any multiple of 32 is a
    * no-op, so all but the last five bits of the rotation distance can be
    * ignored, even if the distance is negative: {@code rotateRight(val,
    * distance) == rotateRight(val, distance & 0x1F)}.
    *
    * @param i the value whose bits are to be rotated right
    * @param distance the number of bit positions to rotate right
    * @return the value obtained by rotating the two's complement binary
    * representation of the specified {@code int} value right by the
    * specified number of bits.
    * @since 1.5
    */
    public static int rotateRight(int i, int distance) {
    return (i >>> distance) | (i << -distance);
    } /**
    * Returns the value obtained by reversing the order of the bits in the
    * two's complement binary representation of the specified {@code int}
    * value.
    *
    * @param i the value to be reversed
    * @return the value obtained by reversing order of the bits in the
    * specified {@code int} value.
    * @since 1.5
    */
    public static int reverse(int i) {
    // HD, Figure 7-1
    i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
    i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
    i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
    i = (i << 24) | ((i & 0xff00) << 8) |
    ((i >>> 8) & 0xff00) | (i >>> 24);
    return i;
    } /**
    * Returns the signum function of the specified {@code int} value. (The
    * return value is -1 if the specified value is negative; 0 if the
    * specified value is zero; and 1 if the specified value is positive.)
    *
    * @param i the value whose signum is to be computed
    * @return the signum function of the specified {@code int} value.
    * @since 1.5
    */
    public static int signum(int i) {
    // HD, Section 2-7
    return (i >> 31) | (-i >>> 31);
    } /**
    * Returns the value obtained by reversing the order of the bytes in the
    * two's complement representation of the specified {@code int} value.
    *
    * @param i the value whose bytes are to be reversed
    * @return the value obtained by reversing the bytes in the specified
    * {@code int} value.
    * @since 1.5
    */
    public static int reverseBytes(int i) {
    return ((i >>> 24) ) |
    ((i >> 8) & 0xFF00) |
    ((i << 8) & 0xFF0000) |
    ((i << 24));
    }

    Bit twiddling

  15. 序列化
     /** use serialVersionUID from JDK 1.0.2 for interoperability */
    @Native private static final long serialVersionUID = 1360826667806852920L;

java.lang.Integer源码浅析的更多相关文章

  1. jdk之java.lang.Integer源码理解

    基本数据类型的包装类java.lang.Integer是我们频繁使用的一个系统类,那么通过一个示例反应出的几个问题来深入理解一下此类的源码. 需求:实现Integer类型的两个数值交换. packag ...

  2. 【JDK】:java.lang.Integer源码解析

    本文对JDK8中的java.lang.Integer包装类的部分数值缓存技术.valueOf().stringSize().toString().getChars().parseInt()等进行简要分 ...

  3. java的Iterator源码浅析

    在java的集合中,List接口继承Collection接口,AbstractList类实现了List接口,在AbstractList中的内部类Itr实现了Iterator接口 ArrayList实现 ...

  4. Java基础—ArrayList源码浅析

    注:以下源码均为JDK8的源码 一. 核心属性 基本属性如下: 核心的属性其实是红框中的两个: //从注释也容易看出,一个是集合元素,一个是集合长度(注意是逻辑长度,即元素的个数,而非数组长度) 其中 ...

  5. java.lang.StringBuffer源码分析

    StringBuffer是一个线程安全的可变序列的字符数组对象,它与StringBuilder一样,继承父类AbstractStringBuilder.在多线程环境中,当方法操作是必须被同步,Stri ...

  6. Java之Integer源码

    1.为什么Java中1000==1000为false而100==100为true? 这是一个挺有意思的讨论话题. 如果你运行下面的代码 Integer a = 1000, b = 1000; Syst ...

  7. java.lang.ThreadLocal源码分析

    ThreadLocal类提供线程本地变量,为变量在每个线程创建一个副本,每个线程可以访问自己内部的副本变量. 比如,有这样一个需求,需要为每个线程创建一个独一无二的标识,这个标识在第一次调用Threa ...

  8. java.lang.StringBuilder源码分析

    StringBuilder是一个可变序列的字符数组对象,它继承自AbstractStringBuilder抽象类.它不保证同步,设计出来的目的是当这个字符串缓存只有单线程使用的时候,取代StringB ...

  9. java.lang.Runnable 源码分析

    子接口:RunnableFuture<V>, RunnableScheduledFuture<V> 实现类:AsyncBoxView.ChildState, ForkJoinW ...

随机推荐

  1. zabbix3.4.7官方解释触发器

    函数   描述 参数 说明 abschange   最近获取值与之前获取值差的绝对值.   支持值的类型: float, int, str, text, log 例如: (最近获取值;之前获取值=ab ...

  2. 简单易懂的 Vue.js 基础知识 !

    根 vue 实例 let viewModel = new Vue({ // 包含数据.模板.挂载元素.方法.生命周期钩子等选项 }) Hello Wrold  <!-- 这是我们的 View - ...

  3. ui自动化:python+appium----环境搭建

    前言: appium可以说是app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本支持java和python.以下为python+appium的安装教程... 环境准备... ...

  4. void的几点用法

    1.可以通过void 0 获取undefined.等同于void(0). void 任意数 === undefined   // true void(0) === undefined  // true ...

  5. 分布式队列celery 异步----Django框架中的使用

    仅仅是个人学习的过程,发现有问题欢迎留言 一.celery 介绍 celery是一种功能完备的即插即用的任务对列 celery适用异步处理问题,比如上传邮件.上传文件.图像处理等比较耗时的事情 异步执 ...

  6. C# 时间戳 整理

    以前遇到时间戳,都是那公共类里面的方法来用.未曾理解过它的原理. C# 时间类型枚举     分为local.utc.以及Unspecified local:当地时间,例如我们所在的东八区,所采用的北 ...

  7. linux command 3

    #user 相关命令 #新创建一个oracle用户,这初始属于oinstall组,且同时让他也属于dba组.useradd oracle -g oinstall -G dba #删除指定用户 –r:是 ...

  8. JavaBasic_12

    类 抽象:对象的共性 类:产生对象的模板(对于属性来讲,类规定有没有属性以及属性类型,具体的属性值因对象的不同而不同) 数据类型:数据集及基于这个数据集的操作 类:我们自定义类型(定义成员变量,基于数 ...

  9. 位运算 - a^b

    求 a 的 b 次方对 p 取模的值. 输入格式 三个整数 a,b,p ,在同一行用空格隔开. 输出格式 输出一个整数,表示a^b mod p的值. 数据范围 1≤a,b,p≤109 输入样例: 3 ...

  10. linux samba smb 在客户端无法连接使用

    netstat -nutlp查看是否启动进程 1.网络是否正常,是否可以ping通.2.Windows和Linux的防火墙全部关闭.3.samba的端口是否开启,tcp/139.tcp/445.udp ...