由Hall定理,任意k种减肥药对应的药材数量>=k。考虑如何限制其恰好为k,可以将其看作是使对应的药材数量尽量少。

  考虑最小割。建一个二分图,左边的点表示减肥药,右边的点表示药材。减肥药和其使用的药材连inf边,这里的inf边较大,可以取到1e18;源向减肥药连inf-pi的边,表示不选这种减肥药会损失pi,这里的inf边较小,可以取到1e9;药材向汇连1e9的inf边,用来限制药材数量。容易发现最后的最小割中至少会割掉n条边,且割掉的边越少越优,而当恰好割掉n条边时,就对应了一种减肥药与药材数量相等的方案。直接跑最小割即可。这是一种针对多级限制的思想。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 610
#define S 0
#define T 601
#define inf 1000000000
#define INF 1000000000000000000ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],p[N],d[N],cur[N],q[N],t=-;
ll ans;
struct data{int to,nxt;ll cap,flow;
}edge[N*N<<];
void addedge(int x,int y,ll z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
ll work(int k,ll f)
{
if (k==T) return f;
ll used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
ll w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans-=work(S,INF);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj6045.in","r",stdin);
freopen("loj6045.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int m=read();
while (m--)
{
int x=read();
addedge(i,n+x,INF);
}
}
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++) addedge(S,i,inf-a[i]),ans+=inf-a[i];
for (int i=;i<=n;i++) addedge(n+i,T,inf);
dinic();
cout<<-ans;
return ;
}

LOJ6045 雅礼集训 2017 Day8 价(最小割)的更多相关文章

  1. $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...

  2. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  3. 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)

    「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out   [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...

  4. loj #6046. 「雅礼集训 2017 Day8」爷

    #6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...

  5. loj6045 「雅礼集训 2017 Day8」价

    我们考虑最小割. 我一开始觉得是裸的最小割,就直接S到每个减肥药连up+p[i]的边,减肥药到药材连inf边,药材到T连up,然后得到了40分的好成绩. 之后我发现这是一个假的最小割,最小割割的是代价 ...

  6. LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)

    题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...

  7. 【LOJ6045】「雅礼集训 2017 Day8」价(网络流)

    点此看题面 大致题意: 有\(n\)种药,每种药有一个权值,且使用了若干种药材.让你选择若干种药,使得药的数量与所使用的药材并集大小相等,求最小权值总和. 网络流 \(hl666\):这种数据范围,一 ...

  8. 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价

    又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...

  9. [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]

    题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...

随机推荐

  1. java语言基础1问题汇总

    1.一个Java类文件中真的只能有一个公有类吗? 程序实验: public class test1 { public static void main( String args[] ){ } publ ...

  2. kubernetes集群中对多个pod操作命令

    $ for i in 0 1; do kubectl exec web-$i -- sh -c 'echo hello $(hostname) > /usr/share/nginx/html/i ...

  3. img图片加载出错处理(转载)

    为了美观当网页图片不存在时不显示叉叉图片当在页面显示的时候,万一图片被移动了位置或者丢失的话,将会在页面显示一个带X的图片,很是影响用户的体验.即使使用alt属性给出了”图片XX”的提示信息,也起不了 ...

  4. npm install报错 npm ERR! enoent ENOENT: no such file or directory

    在npm之后出现如下错误: $ npm install npm WARN checkPermissions Missing write access to /Users/lucas/code/js/v ...

  5. SQL跨服务器查询数据库

    有时候一个项目需要用到两个数据库或多个数据库而且这些数据库在不同的服务器上时,就需要通过跨服务器查找数据 在A服务器的数据库a查询服务器B的数据库b 的bb表 假如服务器B的IP地址为:10.0.22 ...

  6. 【强化学习】python 实现 q-learning 例一

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10134018.html 问题情境 -o---T# T 就是宝藏的位置, o 是探索者的位置 ...

  7. 通用漏洞评估方法CVSS3.0简表

    CVSS3.0计算分值共有三种维度: 1. 基础度量. 分为 可利用性 及 影响度 两个子项,是漏洞评估的静态分值. 2. 时间度量. 基础维度之上结合受时间影响的三个动态分值,进而评估该漏洞的动态分 ...

  8. P4770 [NOI2018]你的名字

    蒟蒻表示不会sam凉凉了,所以只能提高SA技巧? 题意:有一个串\(A\),每次选择一个\(A\)的子串\(A'\),以及串\(B\),问\(B\)的所有本质不同子串中不在\(A'\)中的串的数量. ...

  9. 谈谈css伪类与伪元素

    前端er们大都或多或少地接触过CSS伪类和伪元素,比如最常见的:focus.:hover以及<a>标签的:link.:visited等,伪元素较常见的比如:before.:after等. ...

  10. vsftpd虚拟账户配置

    1. 概述 FTP是文件传输协议,在内外网的文件传输中使用广泛. 本篇博客主要介绍FTP服务器的部署和测试. 2. 软件环境部署 查看系统是否安装FTP软件(vsftpd),执行命令:rpm -qa ...