由Hall定理,任意k种减肥药对应的药材数量>=k。考虑如何限制其恰好为k,可以将其看作是使对应的药材数量尽量少。

  考虑最小割。建一个二分图,左边的点表示减肥药,右边的点表示药材。减肥药和其使用的药材连inf边,这里的inf边较大,可以取到1e18;源向减肥药连inf-pi的边,表示不选这种减肥药会损失pi,这里的inf边较小,可以取到1e9;药材向汇连1e9的inf边,用来限制药材数量。容易发现最后的最小割中至少会割掉n条边,且割掉的边越少越优,而当恰好割掉n条边时,就对应了一种减肥药与药材数量相等的方案。直接跑最小割即可。这是一种针对多级限制的思想。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 610
#define S 0
#define T 601
#define inf 1000000000
#define INF 1000000000000000000ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],p[N],d[N],cur[N],q[N],t=-;
ll ans;
struct data{int to,nxt;ll cap,flow;
}edge[N*N<<];
void addedge(int x,int y,ll z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
ll work(int k,ll f)
{
if (k==T) return f;
ll used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
ll w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans-=work(S,INF);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj6045.in","r",stdin);
freopen("loj6045.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int m=read();
while (m--)
{
int x=read();
addedge(i,n+x,INF);
}
}
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++) addedge(S,i,inf-a[i]),ans+=inf-a[i];
for (int i=;i<=n;i++) addedge(n+i,T,inf);
dinic();
cout<<-ans;
return ;
}

LOJ6045 雅礼集训 2017 Day8 价(最小割)的更多相关文章

  1. $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...

  2. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  3. 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)

    「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out   [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...

  4. loj #6046. 「雅礼集训 2017 Day8」爷

    #6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...

  5. loj6045 「雅礼集训 2017 Day8」价

    我们考虑最小割. 我一开始觉得是裸的最小割,就直接S到每个减肥药连up+p[i]的边,减肥药到药材连inf边,药材到T连up,然后得到了40分的好成绩. 之后我发现这是一个假的最小割,最小割割的是代价 ...

  6. LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)

    题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...

  7. 【LOJ6045】「雅礼集训 2017 Day8」价(网络流)

    点此看题面 大致题意: 有\(n\)种药,每种药有一个权值,且使用了若干种药材.让你选择若干种药,使得药的数量与所使用的药材并集大小相等,求最小权值总和. 网络流 \(hl666\):这种数据范围,一 ...

  8. 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价

    又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...

  9. [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]

    题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...

随机推荐

  1. React-UI组件和容器组件

    UI组件负责页面的渲染,又叫傻瓜组件. 容器组件负责逻辑,又叫聪明组件. 当一个组件只有render函数的时候,就可以用无状态组件的形式来定义这个组件.无状态组件怎么定义呢?其实就是一个函数,接受pr ...

  2. LiveCharts文档-2FAQ

    原文:LiveCharts文档-2FAQ LiveCharts文档-2FAQ 原文链接 LiveCharts基于的平台有WPF,UWP,WinForms:语言是C#, FAQ: 我怎么转换一个char ...

  3. Roslyn入门(一)-C#语法分析

    演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...

  4. Python从菜鸟到高手(1):初识Python

    1 Python简介 1.1 什么是Python   Python是一种面向对象的解释型计算机程序设计语言,由荷兰人吉多·范罗苏姆(Guido van Rossum)于1989年发明,第一个公开发行版 ...

  5. JVM规范系列第2章:Java虚拟机结构

    本规范描述的是一种抽象化的虚拟机的行为,而不是任何一种(译者注:包括 Oracle 公司自己的 HotSpot 和 JRockit 虚拟机)被广泛使用的虚拟机实现. 记住:JVM规范是一种高度抽象行为 ...

  6. 重磅|0元学 Python运维开发,别再错过了

    51reboot 运维开发又双叒叕的搞活动了,鉴于之前 51reboot 的活动反馈,每次活动结束后(或者已经结束了很长时间)还有人在问活动的事情.这一次小编先声明一下真的不想在此次活动结束后再听到类 ...

  7. 没有 iOS 开发者账号的情况下部署到真机的方法

    原文发表于我的技术博客 本文分享了官方推荐的没有 iOS 开发者账号的情况下部署到真机的方法,供参考. 原文发表于我的技术博客 1. 官方推荐的方法 原文在此,也就是 Ionic 官方团队在博客中分享 ...

  8. phpstorm 报错及解决

    1. 当项目里有大量 js 文件时,一旦编辑包含 js 的文件,phpstorm 会卡顿,甚至未响应 问题原因: 内存限制较小 解决方法一: 直接将弹出框中的红色部分修改为需要的内存限制,并选择 Sh ...

  9. MongoDB集群运维笔记

    前面的文章介绍了MongoDB副本集和分片集群的做法,下面对MongoDB集群的日常维护操作进行小总结: MongDB副本集故障转移功能得益于它的选举机制.选举机制采用了Bully算法,可以很方便从分 ...

  10. LVS负载均衡-基础知识梳理

    一. 集群的概念 服务器集群简称集群是一种服务器系统,它通过一组松散集成的服务器软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台服务器.集群系统中的单个服务器通常称 ...