ACM-ICPC 2018 南京赛区网络预赛 E题
ACM-ICPC 2018 南京赛区网络预赛 E题
题目链接: https://nanti.jisuanke.com/t/30994
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.
However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p{i, 1}pi,1-th, p{i, 2}pi,2-th, ......, p{i, s_i}pi,si-th problem before.(0 < p{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n)After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.
"I wonder if I can leave the contest arena when the problems are too easy for me.""No problem."—— CCF NOI Problem set
If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).
Your task is to calculate the maximum number of points he can get in the contest.
Input
The first line of input contains an integer, nn, which is the number of problems.
Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.
Output
Output one line with one integer, the maximum number of points he can get in the contest.
Hint
In the first sample.
On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.
On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.
On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.
On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.
On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.
So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.
In the second sample, you should note that he doesn't have to solve all the problems.
样例输入1复制
5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4
样例输出1复制
55
样例输入2复制
1
-100 0 0
样例输出2复制
0
题目来源
看到了n<20, 很显然就是要状态压缩了。
然后那个前提条件,其实就是状态转移时候的条件了,只要判断一下就可以了。
状态压缩就是用一个二进制数来表示当前的状态,这个数需要有n个二进制位,如果为0表示没有submit这个题,1表示submit了。
dp[i]表示到状态i获得的最多points. 根据i有多少1就知道现在的时间了(每分钟submit一个)。
具体看代码吧。
#include <bits/stdc++.h>
using namespace std;
int bit[22];
int a[22];
int b[22];
int state[22];
long long dp[1<<20];
int numbit[1<<20];
const long long INF = 1000000000000000LL;
int main() {
bit[0] = 1;
for (int i = 1; i < 22; i++)
bit[i] = bit[i-1]<<1;
numbit[0] = 0;
for (int i = 1; i < bit[20]; i++) {
numbit[i] = 1 + numbit[i&(i-1)];
}
int n;
while(scanf("%d", &n) == 1) {
for (int i = 0; i < n; i++) {
scanf("%d%d", &a[i], &b[i]);
int s;
scanf("%d", &s);
int tmp = 0;
state[i] = 0;
while (s--) {
scanf("%d", &tmp);
state[i] |= bit[tmp-1];
}
}
dp[0] = 0;
for (int i = 1; i < bit[n]; i++)dp[i] = -INF;
long long ans = 0;
for (int i = 0; i < bit[n]; i++) {
if (dp[i] == -INF)continue;
ans = max(ans, dp[i]);
for (int j = 0; j < n; j++) {
if (i & bit[j])continue;
if ((i&state[j]) != state[j])continue;
dp[i|bit[j]] = max(dp[i|bit[j]], dp[i] + (long long)(numbit[i]+1)*a[j] + b[j]);
}
}
cout<<ans<<endl;
}
return 0;
}
https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Nanjing-online-E/
ACM-ICPC 2018 南京赛区网络预赛 E题的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)
题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...
- ACM-ICPC 2018 南京赛区网络预赛 L题(分层最短路)
题目链接:https://nanti.jisuanke.com/t/31001 题目大意:给出一个含有n个点m条边的带权有向图,求1号顶点到n号顶点的最短路,可以使<=k条任意边的权值变为0. ...
- ACM-ICPC 2018 南京赛区网络预赛 L题(分层图,堆优化)
题目链接: https://nanti.jisuanke.com/t/31001 超时代码: #include<bits/stdc++.h> using namespace std; # ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛
轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K Alice, a student of g ...
- ACM-ICPC 2018 南京赛区网络预赛B
题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
随机推荐
- 【转】PropertyGrid控件中的多级显示
运行效果: 解决方案: MainForm.cs public partial class MainForm : Form { public MainForm() { InitializeCompone ...
- Windows 系统判断MD5 值的办法
Linux 系统的文件要传到Windows系统里面,传输过程中网络不稳定,为了判断文件是否完整传输,所以就用md5的方式判断是否同一个文件 Linux系统 [root@augusite ~]# md5 ...
- 集群LVS
集群分为LB负载均衡集群,HA高可用集群,LB高应用集群. 前两种比较常见 LB是更加注重性能处理速度,而HA注重是服务器的在线时间. HA集群一般设有主重,当主服务器当掉时候,重服务器进行工作,此时 ...
- 请使用千位分隔符(逗号)表示web网页中的大数字
方法一:使用正则表达式 语法如下: String(Number).replace(/(\d)(?=(\d{3})+$)/g, "$1,"); 举例: String(12345678 ...
- ArrayList类中的contains()方法底层依赖的是equals()方法
ArrayList类中的contains()方法底层依赖的是equals()方法.若集合中的元素是自定义对象,则应该重写该类父类Object的equals()方法,否则对象永远都不相同(因为都是new ...
- 复制数组之System.arraycopy()的使用
System.arraycopy(src, srcPos, dest, destPos, length); [参数说明](注:arraycopy是一个古老的方法,从jdk1.0就有了,而当时命名并不规 ...
- 记录一次惊心动魄的sql去重
)) )) url 为判重依据,保留最大id其他的数据状态改为删除状态. concat()函数,为字符串拼接函数 从外到内分析sql 第一层四个条件界定,第一个是source渠道,第二个是未删除状态, ...
- 最短路径(给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。)
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 例: 输入: [ [1,3,1], [1,5,1], [ ...
- maya shell 和 UV shell 的区别
maya shell 和 UV shell 的区别 shell 是 maya 模型自身分离的部分 UV shell 是 UV 分离的部分 有多少个shell,就至少有多少个 UV shell,但是一个 ...
- DDL DML概念 --- Msysql常用命令
一.DML DML(data manipulation language)数据操纵语言: 就是我们最经常用到的 SELECT.UPDATE.INSERT.DELETE. 主要用来对数据库的数据进行一些 ...