ACM-ICPC 2018 南京赛区网络预赛 E题
ACM-ICPC 2018 南京赛区网络预赛 E题
题目链接: https://nanti.jisuanke.com/t/30994
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.
However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p{i, 1}pi,1-th, p{i, 2}pi,2-th, ......, p{i, s_i}pi,si-th problem before.(0 < p{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n)After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.
"I wonder if I can leave the contest arena when the problems are too easy for me.""No problem."—— CCF NOI Problem set
If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).
Your task is to calculate the maximum number of points he can get in the contest.
Input
The first line of input contains an integer, nn, which is the number of problems.
Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.
Output
Output one line with one integer, the maximum number of points he can get in the contest.
Hint
In the first sample.
On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.
On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.
On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.
On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.
On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.
So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.
In the second sample, you should note that he doesn't have to solve all the problems.
样例输入1复制
5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4
样例输出1复制
55
样例输入2复制
1
-100 0 0
样例输出2复制
0
题目来源
看到了n<20, 很显然就是要状态压缩了。
然后那个前提条件,其实就是状态转移时候的条件了,只要判断一下就可以了。
状态压缩就是用一个二进制数来表示当前的状态,这个数需要有n个二进制位,如果为0表示没有submit这个题,1表示submit了。
dp[i]表示到状态i获得的最多points. 根据i有多少1就知道现在的时间了(每分钟submit一个)。
具体看代码吧。
#include <bits/stdc++.h>
using namespace std;
int bit[22];
int a[22];
int b[22];
int state[22];
long long dp[1<<20];
int numbit[1<<20];
const long long INF = 1000000000000000LL;
int main() {
bit[0] = 1;
for (int i = 1; i < 22; i++)
bit[i] = bit[i-1]<<1;
numbit[0] = 0;
for (int i = 1; i < bit[20]; i++) {
numbit[i] = 1 + numbit[i&(i-1)];
}
int n;
while(scanf("%d", &n) == 1) {
for (int i = 0; i < n; i++) {
scanf("%d%d", &a[i], &b[i]);
int s;
scanf("%d", &s);
int tmp = 0;
state[i] = 0;
while (s--) {
scanf("%d", &tmp);
state[i] |= bit[tmp-1];
}
}
dp[0] = 0;
for (int i = 1; i < bit[n]; i++)dp[i] = -INF;
long long ans = 0;
for (int i = 0; i < bit[n]; i++) {
if (dp[i] == -INF)continue;
ans = max(ans, dp[i]);
for (int j = 0; j < n; j++) {
if (i & bit[j])continue;
if ((i&state[j]) != state[j])continue;
dp[i|bit[j]] = max(dp[i|bit[j]], dp[i] + (long long)(numbit[i]+1)*a[j] + b[j]);
}
}
cout<<ans<<endl;
}
return 0;
}
https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Nanjing-online-E/
ACM-ICPC 2018 南京赛区网络预赛 E题的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)
题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...
- ACM-ICPC 2018 南京赛区网络预赛 L题(分层最短路)
题目链接:https://nanti.jisuanke.com/t/31001 题目大意:给出一个含有n个点m条边的带权有向图,求1号顶点到n号顶点的最短路,可以使<=k条任意边的权值变为0. ...
- ACM-ICPC 2018 南京赛区网络预赛 L题(分层图,堆优化)
题目链接: https://nanti.jisuanke.com/t/31001 超时代码: #include<bits/stdc++.h> using namespace std; # ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛
轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K Alice, a student of g ...
- ACM-ICPC 2018 南京赛区网络预赛B
题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
随机推荐
- 网页前端 html js 相关
1.注释 1.1HTML 注释 http://www.w3school.com.cn/html/html_comments.asp 注释标签 <!-- 与 --> 用于在 HTML 插入注 ...
- web前端中navigator
<script> if(navigator.cookieEnabled){ document.write("浏览器已启用cookie,请妥善保存个人信息"); }els ...
- 简单的线程Thread使用
static void Main(string[] args) { for (int i = 0; i < 5; i++) { aa a = new aa(); a.age = i; Threa ...
- 防止vs编译时自动启动单元测试
Tools → Options → Live Unit Testing Pause 勾选
- Azkaban
Azkaban安装部署 https://azkaban.github.io/azkaban/docs/2.5/ 安装Azkaban ) 在/opt/module/目录下创建azkaban目录 [kri ...
- 设计模式之单例模式及应用demo
单例模式是创建型模式之一. 单例模式顾名思义是单例的,也就是只有一个实例化对象,这都来源于它的私有化构造函数. 单例模式特点: 1.单例类只能有一个实例. 2.单例类必须自己创建自己的唯一实例. 3. ...
- Shiro笔记(三)shiroFilter拦截器配置原则
参考: http://blog.csdn.net/yaowanpengliferay/article/details/17281341
- TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu
import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...
- 【LeetCode算法-7】Reverse Integer
LeetCode第7题: Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Outp ...
- 关于go get安装git golang项目时报错的处理办法
关于go get安装git golang项目时报错的处理办法 使用go get安装github上的项目时一般来说,不可避免会出错.各种错误的处理办法: 必须条件: 1.安装git并配置环境变量.下载地 ...