算法实践--最小生成树(Prim算法)
前一篇介绍了一种最小生成树的算法--Kruskal算法,本篇介绍另一种Prim算法
算法描述
定义V为端点的集合,A为最小生成树,初始为空。对于每个端点v初始的Key[v]=∞, Parent[v]=null
初始化Q为V, 指定任意一个端点为root,其值Key[r]=0
while(Q不为空) {
找出Q中Key值最小的u
Q = Q - u
if (PARENT[u] != null) {
将(u, Parent(u))加入A中
}
foreach(u的相邻端点v) {
if (v在Q中且w(u, v) < Key[v]) {
PARENT[v] = u;
Key[v] = w;
}
}
return A
图片示例
初始状态
选择一个端点a作为root
找出Q中Key最小的a,将其从Q中删除,同时更新其相邻端点b和f的Key和PARENT
找出Q中Key最小的f, 从Q中删除,因为f的父节点为a,将(a, f)加到A中。同时更新f相邻节点的Key和父节点
Q减去c,A加上(c ,f), 更新相邻节点d的Key和父节点
Q减去b,A加上(b, f)
Q减d,A加(c, d)
Q减e,A加(d, e)
C++代码实现
struct Edge {
char vertex1;
char vertex2;
int weight;
Edge(char v1, char v2, int w):vertex1(v1), vertex2(v2), weight(w) {}
}; struct Graph {
vector<char> vertice;
vector<Edge> edges;
vector< pair<char, Edge> > adjacent(char u) { // 返回端点u所有相邻的端点及权重
vector< pair<char, Edge> > res;
for (Edge e : edges) {
if (e.vertex1 == u) {
res.push_back( make_pair(e.vertex2, e));
} else if (e.vertex2 == u) {
res.push_back( make_pair(e.vertex1, e));
}
}
return res;
}
}; void prim(Graph& g, char root) {
unordered_map<char, char> res;
unordered_map<char, char> PARENT;
unordered_map<char, int> KEY; for (auto c : g.vertice) {
PARENT[c] = '\0';
KEY[c] = INT_MAX;
}
KEY[root] = ;
vector<char> Q = g.vertice; while (!Q.empty()) { // O(V)
char u = *std::min_element(Q.begin(), Q.end(), [&](char x, char y) {return KEY[x] < KEY[y];}); // O(v)
vector<char>::iterator itr = remove(Q.begin(), Q.end(), u); // O(V)
Q.erase(itr, Q.end()); // erase() following remove() idiom
if (PARENT[u] != '\0') {
res[u] = PARENT[u]; // This is one edge of MST
}
vector< pair<char, Edge> > adj = g.adjacent(u); // O(E)
for (pair<char, Edge> v : adj) {
if (find(Q.begin(), Q.end(), v.first) != Q.end()) { // O(V)
if (v.second.weight < KEY[v.first]) {
PARENT[v.first] = u;
KEY[v.first] = v.second.weight;
}
}
}
} for (auto e : res) {
cout << e.first << " -- " << e.second << endl;
}
} int main() { Graph g; char t[] = {'a', 'b', 'c', 'd', 'e', 'f'};
g.vertice = vector<char>(t, t + sizeof(t)/sizeof(t[])); g.edges.push_back(Edge('a', 'b', ));
g.edges.push_back(Edge('a', 'f', ));
g.edges.push_back(Edge('f', 'b', ));
g.edges.push_back(Edge('c', 'b', ));
g.edges.push_back(Edge('c', 'f', ));
g.edges.push_back(Edge('f', 'e', ));
g.edges.push_back(Edge('d', 'e', ));
g.edges.push_back(Edge('d', 'c', )); prim(g, 'a'); return ;
}
算法实践--最小生成树(Prim算法)的更多相关文章
- 算法实践--最小生成树(Kruskal算法)
什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 最小生成树Prim算法(邻接矩阵和邻接表)
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
- 最小生成树—prim算法
最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[ ...
- HDU1102 最小生成树prim算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:给出任意两个城市之间建一条路的时间,给出哪些城市之间已经建好,问最少还要多少时间使所有的城 ...
- Highways POJ-1751 最小生成树 Prim算法
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...
- SWUST OJ 1075 求最小生成树(Prim算法)
求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值 ...
- 图论算法(五)最小生成树Prim算法
最小生成树\(Prim\)算法 我们通常求最小生成树有两种常见的算法--\(Prim\)和\(Kruskal\)算法,今天先总结最小生成树概念和比较简单的\(Prim\)算法 Part 1:最小生成树 ...
- 最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析
最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢 ...
随机推荐
- 广工十四届校赛 count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点 ...
- string部分方法
1.string.lastIndexOf() lastIndexOf 是从string末尾查找,但是返回值仍是首部的位置值. 2.string.replace() 放一个正则匹配会全部替换. 3.st ...
- 词向量编码 word2vec
word2vec word2vec 是Mikolov 在Bengio Neural Network Language Model(NNLM)的基础上构建的一种高效的词向量训练方法. 词向量 词向量(w ...
- python之二分法查找
二分法查找主要的作用就是查找元素 规则. 掐头结尾取中间, 必须是有序列 # 二分法查找 (需要你明白和掌握) # lst = [1,3,5,7,12,36,68,79] # n = int(inpu ...
- Android : 关于HTTPS、TLS/SSL认证以及客户端证书导入方法
一.HTTPS 简介 HTTPS 全称 HTTP over TLS/SSL(TLS就是SSL的新版本3.1).TLS/SSL是在传输层上层的协议,应用层的下层,作为一个安全层而存在,翻译过来一般叫做传 ...
- sql执行计划(书中个人总结)
一.什么是sql执行计划 执行一条sql,以最快最低消耗获取出所需数据的一个执行过程. 二.如何获取执行计划 执行计划获取的六种方式: 1.explain plan for 优点和缺点: 2.set ...
- SEH X86
( windows 提供的异常处理机制实际上只是一个简单的框架,一般情况下开发人员都不会直接用到.我们通常所用的异常处理(比如 C++ 的 throw.try.catch)都是编译器在系统提供的异常处 ...
- 关于空指针NULL、野指针、通用指针 (转)
reference:https://www.cnblogs.com/losesea/archive/2012/11/16/2772590.html 首先说一下什么是指针,只要明白了指针的含义,你就明白 ...
- guava-retrying 源码解析(导入项目)
1.从github上下载guava-retry源码 git clone git://github.com/rholder/guava-retrying.git 2.导入idea,使用gradle记得勾 ...
- windows2008 转 centos7 数据磁盘NTFS无损挂载
转换时 原win硬盘里作为系统稳盘的硬盘必须重新格式化才能装机 数据盘在安装ntfs-3g可以直接挂载 几个重要命令: #lsblk //查看硬盘情况 df -T 只可以查看已经挂载的分区和文件系统 ...