MT【62】柯西求三角值域
求$sinx(\sqrt{cos^2x+24}-cosx)$的范围.
解答:[-5,5]
$$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$
$$\le (sin^2x+cos^2x)(cos^2x+24+sin^2x)=25$$
MT【62】柯西求三角值域的更多相关文章
- 蓝桥杯 算法训练 ALGO-151 6-2递归求二进制表示位数
算法训练 6-2递归求二进制表示位数 时间限制:10.0s 内存限制:256.0MB 问题描述 给定一个十进制整数,返回其对应的二进制数的位数.例如,输入十进制数9,其对应的二进制数是1001 ...
- PTA 6-2 多项式求值
PTA 6-2 多项式求值 本题要求实现一个函数 本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式f(x)=∑i=0n(a[i]×xi)" role=" ...
- MT【290】内外圆求三角最值
求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x} ...
- MT【302】利用值域宽度求范围
已知$f(x)=\ln x+ax+b (a>0)$在区间$[t,t+2],(t>0)$上的最大值为$M_t(a,b)$.若$\{b|M_t(a,b)\ge\ln2 +a\}=R$,则实数$ ...
- MT【17】利用柯西不等式求三角的最大值
评:此题也可以设$1+cos\theta=t$,平方后变成$t$的单变量利用均值去做. 柯西平衡系数法其实就是待定系数法,利用等号取到的条件.
- MT【124】利用柯西求最值
已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
- PTA基础编程题目集6-2多项式求值(函数题)
本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式f(x)=∑i=0n(a[i]×xi) 在x点的值. 函数接口定义: double f( int n, dou ...
- PAT基础6-2
6-2 多项式求值 (15 分) 本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式f(x)=∑i=0n(a[i]×xi) 在x点的值. 函数接口定义: dou ...
随机推荐
- 序号生成算法odoo
def get_sum_seq(self, cr, uid, ids, name, args=None, context=None): if not ids: return {} result={} ...
- IDC Digital Transition Annual Festival(2018.10.19)
时间:2018.10.19地点:北京万达文化酒店
- [python][spark]wholeTextFiles 读入多个文件的例子
$pwd /home/training/mydir $cat file1.json {"firstName":"Fred", "lastName&qu ...
- WD与循环 组合数学
WD与循环 LG传送门 为什么大家都是先算\(n\)个数的和等于\(m\)的情况再求前缀和? 既然已经想到了插板法,为什么不直接对\(n\)个数的和\(\le m\)的情况做呢? 基本套路没有变:考虑 ...
- 微信小程序 canvas 绘图问题总结
业务中碰到微信小程序需要生成海报进行朋友圈分享,这个是非常常见的功能,没想到实际操作的时候花了整整一天一夜才搞好,微信的 canvas 绘图实在是太难用了,官方快点优化一下吧. 业务非常简单,只需要将 ...
- Bash : 冒泡排序
冒泡排序是非常基础的排序算法,本文我们看看在 Bash 脚本中如何写冒泡排序.本文的演示环境为 ubuntu 16.04. 冒泡排序的简要描述如下: 通过连续的比较对数组中的元素进行排序 比较两个相邻 ...
- 关于用tesseract和tesserocr识别图片的一个问题
对于像我这样初学python网络爬虫的freshman来说,软件的准备和环境的配置能让我们崩溃.其中用刚安装好的tesseract和tesserocr库测试识别验证码就是其中一例. 这里我要测试的验证 ...
- nginx下目录浏览及其验证功能、版本隐藏等配置记录
工作中常常有写不能有网页下载东西的需求,在Apache下搭建完成后直接导入文件即可达到下载/显示文件的效果;而Nginx的目录列表功能默认是关闭的,如果需要打开Nginx的目录列表功能,需要手动配置, ...
- http 概念
什么是回调? 什么是同步/异步? 什么是I/O? 什么是单线/多线程? 什么是阻塞/非阻塞? 什么是事件? 什么是事件驱动? 什么是基于事件驱动的回调? 什么是事件循环?
- Scrum Meeting NO.6
Scrum Meeting No.6 1.会议内容 今晚是提交编译测试程序的截至日期,大家果断都在忙着写编译,所以今天的进度不大. 2.任务清单 徐越 序号 近期的任务 进行中 已完成 1 代码重构: ...