P3261 [JLOI2015]城池攻占 (左偏树+标记下传)
左偏树还是满足堆的性质,节点距离就是离最近的外节点(无左或者右儿子 或者二者都没有)的距离,左偏性质就是一个节点左儿子的距离不小于右儿子,由此得:节点距离等于右儿子的距离+1。
本题就是对于每个节点都建立一颗左偏树(小根堆),存的是在当前节点的骑士,从下往上模拟题意就行了。
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 const int N = 3e5 + 10;
5 int n, m;
6 int fa[N], c[N], a[N], rt[N];
7 ll h[N], v[N], s[N];
8 int ls[N], rs[N], dep[N];
9 int Dep[N], die[N], ans[N];
10 ll add[N], tim[N];//+ *
11
12 void pushdown(int x) {//下传标记
13 if (add[x] == 0 && tim[x] == 1) return;
14 if (ls[x]) {
15 tim[ls[x]] *= tim[x];
16 add[ls[x]] *= tim[x];
17 add[ls[x]] += add[x];
18 s[ls[x]] *= tim[x];
19 s[ls[x]] += add[x];
20 }//先处理乘再处理加
21 if (rs[x]) {
22 tim[rs[x]] *= tim[x];
23 add[rs[x]] *= tim[x];
24 add[rs[x]] += add[x];
25 s[rs[x]] *= tim[x];
26 s[rs[x]] += add[x];
27 }
28 add[x] = 0, tim[x] = 1; //恢复标记
29 }
30
31 int merge(int x, int y) {
32 if (!x || !y) return x + y;
33 pushdown(x), pushdown(y);
34 if (s[x] > s[y]) swap(x, y);//小根堆
35 rs[x] = merge(rs[x], y);//x的右节点与y合并
36 if (dep[ls[x]] < dep[rs[x]]) swap(ls[x], rs[x]);//维护左偏性质
37 dep[x] = dep[rs[x]] + 1;
38 return x;
39 }
40
41 int main() {
42 scanf("%d %d", &n, &m);
43 for (int i = 1; i <= n; i++) {
44 scanf("%lld", &h[i]);//城池防御力
45 rt[i] = -1;//设为空
46 }
47 Dep[1] = 1, dep[0] = -1;
48 for (int i = 2; i <= n; i++) {
49 scanf("%d %d %lld", &fa[i], &a[i], &v[i]);//父亲 城池能力改变方式 城池能力改变值
50 Dep[i] = Dep[fa[i]] + 1;
51 }
52 for (int i = 1; i <= m; i++) {
53 scanf("%lld %d", &s[i], &c[i]);//骑士能力 出生地
54 tim[i] = 1;
55 if (rt[c[i]] == -1) rt[c[i]] = i;
56 else rt[c[i]] = merge(rt[c[i]], i);//合并同城骑士
57 }
58 for (int i = n; i >= 1; i--) {//从下到上
59 while (rt[i] != -1) {//当前堆不为空
60 if (s[rt[i]] < h[i]) {
61 die[rt[i]] = i;//死亡
62 pushdown(rt[i]);
63 if (!ls[rt[i]]) rt[i] = -1;
64 else rt[i] = merge(ls[rt[i]], rs[rt[i]]);
65 }
66 else break;//剩下的不死
67 }
68 if (i == 1) break;//特判根节点
69 if (rt[i] == -1) continue;
70 if (a[i]) tim[rt[i]] *= v[i], add[rt[i]] *= v[i], s[rt[i]] *= v[i];
71 else add[rt[i]] += v[i], s[rt[i]] += v[i];
72 pushdown(rt[i]);
73 if (rt[fa[i]] == -1) rt[fa[i]] = rt[i];
74 else rt[fa[i]] = merge(rt[fa[i]], rt[i]);//幸存骑士到父节点
75 }
76 for (int i = 1; i <= m; i++) ans[die[i]]++;
77 for (int i = 1; i <= n; i++) printf("%d\n", ans[i]);
78 for (int i = 1; i <= m; i++) printf("%d\n", Dep[c[i]] - Dep[die[i]]);
79 return 0;
80 }
81 /*
82 1.注意tim 初始化为1
83 2.dep[0] = -1 ***** 左偏树中空节点距离要设为-1
84 3.注意处理标记
85 4.特判骑士死光的情况(MLE)
86 */
P3261 [JLOI2015]城池攻占 (左偏树+标记下传)的更多相关文章
- [luogu3261 JLOI2015] 城池攻占 (左偏树+标记)
传送门 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的 ...
- [洛谷P3261] [JLOI2015]城池攻占(左偏树)
不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...
- BZOJ 4003 / Luogu P3261 [JLOI2015]城池攻占 (左偏树)
左偏树裸题,在树上合并儿子传上来的堆,然后小于当前结点防御值的就pop掉,pop的时候统计答案. 修改的话就像平衡树一样打懒标记就行了. 具体见代码 CODE #include<bits/std ...
- [JLOI2015]城池攻占 左偏树
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi &l ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
- [BZOJ4003][JLOI2015]城池攻占(左偏树)
这题有多种做法,一种是倍增预处理出每个点往上走2^i步最少需要的初始战斗力,一种是裸的启发式合并带标记splay. 每个点合并能攻占其儿子的所有骑士,删去所有无法攻占这个城市的骑士并记录答案. 注意到 ...
- BZOJ4003 [JLOI2015]城池攻占 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4003 题意概括 题意有点复杂,直接放原题了. 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑 ...
- bzoj 4003 [JLOI2015]城池攻占 —— 左偏树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4003 其实蛮简单的,首先一个城市只会被其子树中的骑士经过,启发我们 dfs 序用可并堆合并子 ...
- bzoj 4003: 城池攻占 左偏树
题目大意 http://www.lydsy.com/JudgeOnline/problem.php?id=4003 题解 一开始看漏条件了 题目保证当占领城池可以使攻击力乘上\(v_i\)时,一定有\ ...
随机推荐
- treap(小根堆)模板
总结教训 对于treap使用小根堆性质,一定要特判左右子树是否存在,因为空节点的优先级为0,是最高的,不特判会出错我就这么错了,so 一定要特判!一定要特判!一定要特判!重要的事情说三遍 本文代码根据 ...
- C# 基础知识-反射
一.反射 1>反射的命名空间是System.Reflection 2>是.Net框架提供的帮助类库,读取并使用matedata 二.反射基本用法 举例如下 1>Assembly as ...
- 合并表格行---三层for循环遍历数据
合并表格行---三层for循环遍历数据 示例1 json <!DOCTYPE html> <html lang="zh_cn"> <head> ...
- 四边形不等式优化 dp (doing)
目录 1. 四边形不等式与决策单调性 2. 决策单调性优化 dp - (i) 关于符号 1. 四边形不等式与决策单调性 定义(四边形不等式) 设 \(w(x,y)\) 是定义在整数集合上的二元函数,若 ...
- mac下安装YII
新换了台电脑,一个mac,特蛋疼的各种环境安装.两个多小时,总算把开发环境配好了. XAMPP就不用说了,phpstorm(javaEE 6.0),navicat for mysql ,一堆的注册码, ...
- Apache DolphinScheduler&ShenYu(Incubating) 联合 Meetup,暖春 3 月与你相约!
云霞出海曙,梅柳渡江春. 2022 年的早春在疫情中显得格外生机勃勃,虽然接下来寒流仍有可能造访国内部分地区,但开源的世界,早已热闹非凡! 2022 年 3 月 26 日(星期六), Apache D ...
- DolphinScheduler 1.2.0 源码解析之 MasterServer
这一篇主要讲解的是dolphinscheduler 1.2.0 的master部分的源码,从主类MasterServer开始,从启动到运行,master主要做了以下三件事情 Zookeeper 节点初 ...
- Apache DolphinScheduler 源码剖析之 Worker 容错处理流程
今天给大家带来的分享是 Apache DolphinScheduler 源码剖析之 Worker 容错处理流程 DolphinScheduler源码剖析之Worker容错处理流程 Worker容错流程 ...
- vue自定义switch开关,使用less支持换肤
实际项目用到了,记录一下,也方便以后使用,这样也可以避免为了使用一个switch,引入整个外部web框架: 也可以方便更好的理解是和使用less. 基础代码使用的是网上的,然后自己添加了less换肤, ...
- Luogu3092 [USACO13NOV]没有找零No Change (状压DP)
将金币状压,然后就没多说的了. #include <iostream> #include <cstdio> #include <cstring> #include ...