Upd 2021.10.21 更改了状态定义。

记 \(S(u)\) 表示 \(u\) 结点的相邻结点的集合。

又记 \(p(u)\) 表示走到了 \(u\) 且下一步继续留在 \(u\) 结点的概率,那么下一步离开 \(u\) 结点的概率即为 \(1 - p(u)\)。

设 \(f(i, j)\) 表示 Petya 在 \(i\) 且 Vasya 在 \(j\) 这种状态的期望出现次数。

可知所有的形如 \(f(i, i)\) 的状态都是不能用于转移的,因为它们已经是末状态了。

因为钦定了末状态只出现一次,故可知末状态的期望出现次数即该状态的概率。

故有

\[f(i, j) = \sum_{k \in S(i), k \neq j} f(k, j) \times \frac{1 - p(k)} {|S(k)|} \times p(j) + \sum_{k \in S(j), k \neq i} f(i, k) \times \frac{1 - p(k)} {|S(k)|} \times p(i) + \sum_{u \in S(i), v \in S(j), u \neq v} f(u, v) \times \frac{1 - p(u)} {|S(u)|} \times \frac{1 - p(v)} {|S(v)|}
\]

显然这个转移是有后效性的,无法用简单的递推做。故考虑高斯消元,将该式转换为我们熟悉的方程形式进行求解即可。

共有 \(n ^ 2\) 只方程,时间复杂度 \(O(n ^ 6)\)。

因为一开始处于初始状态,故初始状态期望出现次数自带 \(1\)。

#include <cstdio>
#include <vector>
using namespace std; int Abs(int x) { return x < 0 ? -x : x; }
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; } int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while ('0' <= s && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
} void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
} void print(int x, char c) {
write(x);
putchar(c);
} const int MAXN = 23 * 23 + 5; struct Elimination {
bool free[MAXN];
int n, m, rk, opt;
double a[MAXN][MAXN], eps;
Elimination() { eps = 1e-15; }
Elimination(int N, int M) {
n = N;
m = M;
}
double Abs(double x) { return x < eps ? -x : x; }
void Swap(double &x, double &y) {
double t = x;
x = y;
y = t;
} void clear() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) a[i][j] = 0;
} void calc() {
int r = 1, c = 1;
for (; r <= n && c <= m; r++, c++) {
int pos = r;
for (int i = r + 1; i <= n; i++)
if (Abs(a[i][c]) > Abs(a[pos][c]))
pos = i;
if (Abs(a[pos][c]) < eps) {
r--;
continue;
}
if (pos != r)
for (int i = c; i <= m; i++) Swap(a[r][i], a[pos][i]);
double t;
for (int i = 1; i <= n; i++)
if (i != r && Abs(a[i][c]) > eps) {
t = a[i][c] / a[r][c];
for (int j = m; j >= c; j--) a[i][j] -= t * a[r][j];
}
}
rk = r;
}
}; int deg[MAXN];
double p[MAXN];
vector<int> mp[MAXN]; void Add_Edge(int u, int v) {
mp[u].push_back(v);
mp[v].push_back(u);
} struct node {
int x, y;
node() {}
node(int X, int Y) {
x = X;
y = Y;
}
int Get(int n) { return (x - 1) * n + y; }
}; int main() {
int n = read(), m = read(), x = read(), y = read();
for (int i = 1, u, v; i <= m; i++) {
u = read(), v = read();
Add_Edge(u, v);
deg[u]++, deg[v]++;
}
for (int i = 1; i <= n; i++) scanf("%lf", &p[i]);
Elimination q;
q.n = n * n;
q.m = q.n + 1;
q.clear();
q.a[node(x, y).Get(n)][q.m] = -1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
int pos = node(i, j).Get(n);
q.a[pos][pos]--;
if (i != j)
q.a[pos][pos] += p[i] * p[j];
for (size_t k1 = 0; k1 < mp[i].size(); k1++)
for (size_t k2 = 0; k2 < mp[j].size(); k2++) {
int u = mp[i][k1], v = mp[j][k2];
if (u == v)
continue;
q.a[pos][node(u, v).Get(n)] += (1 - p[u]) * (1 - p[v]) / deg[u] / deg[v];
}
for (size_t k = 0; k < mp[i].size(); k++)
if (mp[i][k] != j)
q.a[pos][node(mp[i][k], j).Get(n)] += (1 - p[mp[i][k]]) / deg[mp[i][k]] * p[j];
for (size_t k = 0; k < mp[j].size(); k++)
if (mp[j][k] != i)
q.a[pos][node(i, mp[j][k]).Get(n)] += (1 - p[mp[j][k]]) / deg[mp[j][k]] * p[i];
}
q.calc();
for (int i = 1; i <= n; i++)
printf("%.9f\n", q.a[node(i, i).Get(n)][q.m] / q.a[node(i, i).Get(n)][node(i, i).Get(n)]);
return 0;
}

Solution -「CF113D」Museum的更多相关文章

  1. Solution -「构造」专练

    记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数 ...

  2. Solution -「原创」Destiny

    题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他 ...

  3. Solution -「GLR-R2」教材运送

    \(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点,有点权和边权的树.设当前位置 \(s\)(初始时 \(s=1\)),每次在 \(n\) 个结点内 ...

  4. Solution -「WF2011」「BZOJ #3963」MachineWorks

    \(\mathcal{Description}\)   Link.   给定你初始拥有的钱数 \(C\) 以及 \(N\) 台机器的属性,第 \(i\) 台有属性 \((d_i,p_i,r_i,g_i ...

  5. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  6. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  7. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  8. Solution -「ZJOI2012」「洛谷 P2597」灾难

    \(\mathcal{Description}\)   link.   给定一个捕食网络,对于每个物种,求其灭绝后有多少消费者失去所有食物来源.(一些名词与生物学的定义相同 w.)   原图结点数 \ ...

  9. Solution -「JSOI2008」「洛谷 P4208」最小生成树计数

    \(\mathcal{Description}\)   link.   给定带权简单无向图,求其最小生成树个数.   顶点数 \(n\le10^2\),边数 \(m\le10^3\),相同边权的边数不 ...

随机推荐

  1. 看完复旦博士用Python统计核酸结果后,我照着也写了一个

    前几天,人民日报公众号报道了复旦博士生自己写代码,通过OCR和正则表达式统计核酸截图结果.具体文章见:https://mp.weixin.qq.com/s/l8u9JifKDlRDoz32-jZWQg ...

  2. Docker的基本原理及使用

    Docker 安装 https://docs.docker.com/engine/install/ubuntu/ 应用场景 Web 应用的自动化打包和发布. 自动化测试和持续集成.发布. 在服务型环境 ...

  3. 148. Sort List - LeetCode

    Solution 148. Sort List Question 题目大意:对链表进行排序 思路:链表转为数组,数组用二分法排序 Java实现: public ListNode sortList(Li ...

  4. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...

  5. 个人冲刺(四)——体温上报app(二阶段)

    冲刺任务:完成用户注册功能和数据库类 RegisterActivity.java package com.example.helloworld; import android.content.Inte ...

  6. 第31章 Spring bean 作用域

    每日一句 I must say a word about fear. It is life's only true opponent. Only fear can defeat life. 这里必须说 ...

  7. 「洛谷 P3834」「模板」可持久化线段树 题解报告

    题目描述 给定n个整数构成的序列,将对于指定的闭区间查询其区间内的第k小值. 输入输出格式 输入格式 第一行包含两个正整数n,m,分别表示序列的长度和查询的个数. 第二行包含n个整数,表示这个序列各项 ...

  8. python PIL 图片素描化

    from PIL import Image import numpy as np a = np.asarray(Image.open("D://7.jpg").convert('L ...

  9. 拙见--springMVC的controller接受的请求参数

    1-这种是最常用的表单参数提交,ContentType指定为application/x-www-form-urlencoded,也就是会进行URL编码. 1.1-对象类型实体Bean接收请求参数(表单 ...

  10. JS:&&运算符

    &&逻辑运算符 当&&连接语句时,两边的语句会转化为布尔类型 1.两边条件都为true时,结果才为true: 2.如果有一个为false,结果就为false: 3.当第 ...