tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。
程序比较复杂,我就分成几个部分来叙述。
首先,下载并加载数据:
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784]) #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #输入的标签占位符
定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。
#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) #定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #定义一个函数,用于构建卷积层
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定义一个函数,用于构建池化层
def max_pool(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
接下来构建网络。整个网络由两个卷积层(包含激活层和池化层),一个全连接层,一个dropout层和一个softmax层组成。
#构建网络
x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层
h_pool1 = max_pool(h_conv1) #第一个池化层 W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二个卷积层
h_pool2 = max_pool(h_conv2) #第二个池化层 W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一个全连接层 keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout层 W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax层
网络构建好后,就可以开始训练了。
cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0: #训练100次,验证一次
train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
print 'step %d, training accuracy %g'%(i,train_acc)
train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print "test accuracy %g"%test_acc
Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。
这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。
训练20000次后,再进行测试,测试精度可以达到99%。
完整代码:
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 8 15:29:48 2016 @author: root
"""
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784]) #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #输入的标签占位符 #定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) #定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #定义一个函数,用于构建卷积层
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定义一个函数,用于构建池化层
def max_pool(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') #构建网络
x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层
h_pool1 = max_pool(h_conv1) #第一个池化层 W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二个卷积层
h_pool2 = max_pool(h_conv2) #第二个池化层 W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一个全连接层 keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout层 W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax层 cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0: #训练100次,验证一次
train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
print('step',i,'training accuracy',train_acc)
train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print("test accuracy",test_acc)
tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)的更多相关文章
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- UFLDL深度学习笔记 (六)卷积神经网络
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...
- 神经网络与深度学习笔记 Chapter 6之卷积神经网络
深度学习 Introducing convolutional networks:卷积神经网络介绍 卷积神经网络中有三个基本的概念:局部感受野(local receptive fields), 共享权重 ...
- 深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- TensorFlow学习笔记13-循环、递归神经网络
循环神经网络(RNN) 卷积网络专门处理网格化的数据,而循环网络专门处理序列化的数据. 一般的神经网络结构为: 一般的神经网络结构的前提假设是:元素之间是相互独立的,输入.输出都是独立的. 现实世界中 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week1 卷积神经网络基础知识介绍
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来 ...
随机推荐
- java多线程-信号量
Semaphore(信号量)是一个线程同步结构,用于在线程间传递信号,以避免出现信号丢失,或者像锁一样用于保护一个关键区域.自从 5.0 开始,jdk 在 java.util.concurrent 包 ...
- php动态更改post_max_size, upload_max_filesize等值
在配置文件里 有些PHP 配置选项可以用int_set() 函数 直接在 项目里修改.但是有些值确不行.例如和上传文件有关的post_max_size和upload_max_filesize int_ ...
- 期待已久的2013年度最佳 jQuery 插件揭晓
让人期待已久的2013年度最佳 jQuery 插件揭晓了.在过去的一年里,有很多很多的 jQuery 插件发布出来,而这里文章列出的这些插件从提供的功能更角度来看是其中的佼佼者.相信这些优秀的 jQu ...
- elk查询语法
查询指定IP段,如123.123.123.* geo.ip=123.123.123.*
- CoreData数据库浅析
Core Data是iOS5之后才出现的一个框架,它提供了对象-关系映射(ORM)的功能,即能够将OC对象转化成数据,保存在SQLite数据库文件中,也能够将保存在数据库中的数据还原成OC对象.在此数 ...
- “#if 0/#if 1 ... #endif”的作用
1. "#if 0/#if 1 ... #endif"的作用,我们知道,C标准不提供C++里的"//"这样的单行风格注释而只提供"/* */" ...
- swift实现饭否应用客户端源码
swift 版 iOS 饭否客户端 源码下载:http://code.662p.com/view/13318.html 饭否是中国大陆地区第一家提供微博服务的网站,被称为中国版Twitter.用户可通 ...
- SQL SERVER 2012/2014 链接到 SQL SERVER 2000的各种坑
本文总结一下SQL SERVER 2012/2014链接到SQL SERVER 2000的各种坑,都是在实际应用中遇到的疑难杂症.可能会有人说怎么还在用SQL SERVER 2000,为什么不升级呢? ...
- [AlwaysOn Availability Groups]排查:AG超过RPO
排查:AG超过RPO 在异步提交的secondary上执行了切换,你可能会发现数据的丢失大于RPO,或者在计算可以忍受的数据都是超过了RPO. 1.通常原因 1.网络延迟太高,网络吞吐量太低,导致Pr ...
- Linux笔记:使用Vim编辑器
Vi编辑器是Unix系统上早先的编辑器,在GNU项目将Vi编辑器移植到开源世界时,他们决定对其作一些改进. 于它不再是以前Unix中的那个原始的Vi编辑器了,开发人员也就将它重命名为Vi improv ...