tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。
程序比较复杂,我就分成几个部分来叙述。
首先,下载并加载数据:
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784]) #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #输入的标签占位符
定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。
#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) #定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #定义一个函数,用于构建卷积层
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定义一个函数,用于构建池化层
def max_pool(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
接下来构建网络。整个网络由两个卷积层(包含激活层和池化层),一个全连接层,一个dropout层和一个softmax层组成。
#构建网络
x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层
h_pool1 = max_pool(h_conv1) #第一个池化层 W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二个卷积层
h_pool2 = max_pool(h_conv2) #第二个池化层 W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一个全连接层 keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout层 W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax层
网络构建好后,就可以开始训练了。
cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0: #训练100次,验证一次
train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
print 'step %d, training accuracy %g'%(i,train_acc)
train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print "test accuracy %g"%test_acc
Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。
这里,我们使用更加方便的InteractiveSession
类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。
训练20000次后,再进行测试,测试精度可以达到99%。
完整代码:
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 8 15:29:48 2016 @author: root
"""
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784]) #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #输入的标签占位符 #定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) #定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #定义一个函数,用于构建卷积层
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定义一个函数,用于构建池化层
def max_pool(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') #构建网络
x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层
h_pool1 = max_pool(h_conv1) #第一个池化层 W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二个卷积层
h_pool2 = max_pool(h_conv2) #第二个池化层 W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一个全连接层 keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout层 W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax层 cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0: #训练100次,验证一次
train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
print('step',i,'training accuracy',train_acc)
train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print("test accuracy",test_acc)
tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)的更多相关文章
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- UFLDL深度学习笔记 (六)卷积神经网络
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...
- 神经网络与深度学习笔记 Chapter 6之卷积神经网络
深度学习 Introducing convolutional networks:卷积神经网络介绍 卷积神经网络中有三个基本的概念:局部感受野(local receptive fields), 共享权重 ...
- 深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- TensorFlow学习笔记13-循环、递归神经网络
循环神经网络(RNN) 卷积网络专门处理网格化的数据,而循环网络专门处理序列化的数据. 一般的神经网络结构为: 一般的神经网络结构的前提假设是:元素之间是相互独立的,输入.输出都是独立的. 现实世界中 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week1 卷积神经网络基础知识介绍
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来 ...
随机推荐
- Netty(三)TCP粘包拆包处理
tcp是一个“流”的协议,一个完整的包可能会被TCP拆分成多个包进行发送,也可能把小的封装成一个大的数据包发送,这就是所谓的TCP粘包和拆包问题. 粘包.拆包问题说明 假设客户端分别发送数据包D1和D ...
- PHP
* PHP语言1.基本内容 * PHP语言 - 类似于javascript语言的 * javascript是客户端(HTML)的脚本语言 * PHP是服务器端的脚本语言 * PHP文件的扩展名为&qu ...
- HTML5学习笔记四 HTML文本格式化
HTML 格式化标签 HTML 使用标签<b> 与<i> 对输出的文本进行格式, 如:粗体 or 斜体 这些HTML标签被称为格式化标签 通常标签 <strong> ...
- iOS开发之Bug--UITextField使用时文字向下偏移问题
这个问题,在之前项目中偶然遇到过,但是bug不明显,也不知道具体是哪种重现方式重现的,所以一直暂时略过了,但是随着项目的系统的规模变大,代码量越多, 这个问题出现的越来越明显了. 于是就只能靠百度和g ...
- Linux 通过sendmail 发邮件到外部邮箱
最近在写自动化巡检脚本,想着怎么预警后自动发送邮件报警. 首先下载最新版本mailx-12.4.tar.bz2 # wget http://sourceforge.net/projects/heirl ...
- Mac上idea快捷键
名称 快捷键 代码提示 ctrl + space 自动修正 alt + enter 查看调用链call hierarchy ctrl + H 查找文件 双击shift 查找类 command + N ...
- 2、软件设计师要阅读的书籍 - IT软件人员书籍系列文章
软件设计师在项目组中的地位比软件工程师相对要高一些.但是他们所要阅读的书籍差别还是比较大的.同样的,软件设计师也要阅读比较多的书籍,以能够完成项目的任务为目的,同时还要提高自身在项目组中的竞争地位,而 ...
- Linux SendMail服务启动慢总结
在 CentOS release 6.6 上启动sendmail服务时发现服务启动过程非常慢,基本上要耗费3分多钟.有点纳闷:什么原因导致sendmail启动这么慢?搜索了这方面的一些资料,结合自己的 ...
- Oracle常用语句集合
oracle常用经典SQL查询 常用SQL查询: .查看表空间的名称及大小 )),) ts_size from dba_tablespaces t, dba_data_files d where t. ...
- Linux(Centos6.5) Nginx 安装
Nginx一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器,一个Apache服务器不错的替代品. 能够支持高达 50,000 个并发连接数的响应 ...