【论文解读】NIPS 2021-HSWA: Hierarchical Semantic-Visual Adaption for Zero-Shot Learning.(基于层次适应的零样本学习)
作者:陈使明
华中科技大学
【论文解读】NIPS 2021-HSWA: Hierarchical Semantic-Visual Adaption for Zero-Shot Learning.(基于层次适应的零样本学习)的更多相关文章
- 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning 2017-06-06 21: ...
- 论文解读(USIB)《Towards Explanation for Unsupervised Graph-Level Representation Learning》
论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng ...
- 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...
- 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...
- 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...
- CVPR2020论文解读:三维语义分割3D Semantic Segmentation
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3 ...
- A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2021)
A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2 ...
- Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads 论文解读(VLDB 2021)
Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads 论文解读(VLDB 2021) ...
- Fauce:Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation 论文解读(VLDB 2021)
Fauce:Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation 论文解读(VLDB 2021) 本 ...
- 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
随机推荐
- Kubernetes HPA 使用详解
文章转载自:https://www.qikqiak.com/post/k8s-hpa-usage/ Kubernetes 提供了这样的一个资源对象:Horizontal Pod Autoscaling ...
- Ingress
一.需求背景 固定对外提供服务采用了NodePort方式映射并固定了30001端口,但是,该端口默认范围是30000~32767,并且我们的web服务一般都是80.443端口对外,因此我们产生了如下几 ...
- MySQL集群搭建(5)-MHA高可用架构
1 概述 1.1 MHA 简介 MHA - Master High Availability 是由 Perl 实现的一款高可用程序,出现故障时,MHA 以最小的停机时间(通常10-30秒)执行 mas ...
- Elastic:Elastic Maps 基于位置的警报 - 7.10
文章转载自:https://elasticstack.blog.csdn.net/article/details/112535618
- vue-router query和params 传参和接收参数
1.params 方式传递和接收参数 //传参 this.$router.push({ name: 'checkDetailInfo', params:{ fkdNum:fkdNum, jyayStr ...
- 复现禅道V16.5的SQL注入(CNVD-2022-42853)
漏洞详情 禅道V16.5未对输入的account参数内容作过滤校验,导致攻击者拼接恶意SQL语句执行. 环境搭建 环境下载:禅道V16.5 下载后双击运行,进入目录运行start.exe 直接访问即可 ...
- 记Windows的一个存在了十多年的bug
bug Windows有一个bug,持续了十多年,从Windows Visita开始(2007年),一直存在,直到Windows11(2021年)才修复(其实也不叫修复,后面我再具体说),而Windo ...
- 设计模式之观察者模式_C++
1 // ADBHelper.cpp : This file contains the 'main' function. Program execution begins and ends there ...
- bootstrapValidator 参数校验框架
bootstrap:能够增加兼容性的强大框架. 因为项目需要数据验证,看bootstrapValidator 还不错,就上手一直,完美兼容,话不多说. 需要引用css: bootstrap.min.c ...
- 【翻译】Raft 共识算法:集群成员变更
转载请注明出处:https://www.cnblogs.com/morningli/p/16770129.html 之前都在集群配置是固定的(参与共识算法的server集合)假设下讨论raft.在实践 ...