[NOIP1996 提高组] 挖地雷(原题)

题目描述

在一个地图上有\(N\)个地窖\((N \le 20)\),每个地窖中埋有一定数量的地雷。同时,给出地窖之间的连接路径。当地窖及其连接的数据给出之后,某人可以从任一处开始挖地雷,然后可以沿着指出的连接往下挖(仅能选择一条路径),当无连接时挖地雷工作结束。设计一个挖地雷的方案,使某人能挖到最多的地雷。

输入格式

有若干行。

第\(1\)行只有一个数字,表示地窖的个数\(N\)。

第\(2\)行有\(N\)个数,分别表示每个地窖中的地雷个数。

第\(3\)行至第\(N+1\)行表示地窖之间的连接情况:

第\(3\)行有\(n-1\)个数(\(0\)或\(1\)),表示第一个地窖至第\(2\)个、第\(3\)个、…、第\(n\)个地窖有否路径连接。如第\(3\)行为\(1 1 0 0 0 … 0\),则表示第\(1\)个地窖至第\(2\)个地窖有路径,至第\(3\)个地窖有路径,至第\(4\)个地窖、第\(5\)个、…、第\(n\)个地窖没有路径。

第\(4\)行有\(n-2\)个数,表示第二个地窖至第\(3\)个、第\(4\)个、…、第\(n\)个地窖有否路径连接。

… …

第\(n+1\)行有\(1\)个数,表示第\(n-1\)个地窖至第\(n\)个地窖有否路径连接。(为\(0\)表示没有路径,为\(1\)表示有路径)。

输出格式

有两行

第一行表示挖得最多地雷时的挖地雷的顺序,各地窖序号间以一个空格分隔,不得有多余的空格。

第二行只有一个数,表示能挖到的最多地雷数。

样例 #1

样例输入 #1

5
10 8 4 7 6
1 1 1 0
0 0 0
1 1
1

样例输出 #1

1 3 4 5
27

例题分析

思路一:动态规划

不难发现要想从j到i有两个条件:

  • 两个地窖间有路相互连通(题目似乎并不允许自己挖一条……)
  • i的地雷数与目前j的总地雷数之和大于i的最大地雷数,即目前j点的最大价值与i点的价值这和大于i点的最大价值(要不然你走了干嘛……)

所以状态转移方程很简单:dp[i]=max(dp[i],dp[j]+a[i])

随后是稍微不一样的地方:它要求输出路径

如果用搜索,路径很好保存。但如果是动规的话还需要再维护一个数组pre作为每一个点的前驱(就是你从哪来的)。

比如从a到b,它符合上述两个条件,那么可以更新b点的最大价值,并且将b的前驱设为a点,那么输出时只要倒序输出即可。

AC代码如下:

点击查看代码
#include<bits/stdc++.h>
using namespace std;
bool flag[500][500]; //两个点是否连通
int a[500],dp[500],pre[500],pos,n,ans; //a为总价值,pre为前驱,dp为一维动规数组
void dfs(int num){ //输出用的函数
if(pre[num]) dfs(pre[num]);
printf("%d ",num);
return ;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<n;i++){
for(int j=i+1;j<=n;j++){
cin>>flag[i][j];
}
}
dp[1]=a[1]; //初始价值
for(int i=2;i<=n;i++){
dp[i]=a[i];
for(int j=i-1;j>0;j--){
if(flag[j][i]&&dp[i]-a[i]<dp[j]){
//不用状态转移方程是因为此处要记录前驱点
dp[i]=dp[j]+a[i];
pre[i]=j;
}
}
if(ans<dp[i]){
ans=dp[i];
pos=i;
}
}
dfs(pos);
printf("\n%d",ans);
return 0;
}

思路二:dfs暴搜

暴力骗分,但对于较强数据建议dp,或者做例如记忆化之类的优化

可以参考灰名红名大佬的第一篇题解

AC代码如下:

点击查看代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
using namespace std;
bool f[21][21];//记录是否有路径相连
int a[21];//记录地雷数
int path[21],ans[21],cnt;//path记录路径,ans记录答案,cnt记录走了多少个点
bool b[21];//记录该点是否走过
int n;
int maxx;//记录挖的最大地雷数
bool chck(int x)//检查是否还能继续往下挖
{
for(int i=1;i<=n;i++)
{
if(f[x][i]&&!b[i]) return false;
}
return true;
}
void dfs(int x,int stp,int sum)//x记录现在位置,stp记录走了几个点,sum记录挖的地雷数
{
if(chck(x))
{
if(maxx<sum)//更新最大值和路径
{
maxx=sum;
cnt=stp;
for(int i=1;i<=stp;i++)
ans[i]=path[i];
}
return ;
}
for(int i=1;i<=n;i++)//寻找下一个能去的地方
{
if(f[x][i]&&!b[i])
{
b[i]=1;//标记走过
path[stp+1]=i;//记录路径
dfs(i,stp+1,sum+a[i]);
b[i]=0;//回溯
} }
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
{
cin>>f[i][j];//这里是单向边,题目没啥清楚,导致我调了半个小时;
}
for(int i=1;i<=n;i++)
{
b[i]=1;
path[1]=i;//记录起点
dfs(i,1,a[i]);
b[i]=0;
}
for(int i=1;i<=cnt;i++)
cout<<ans[i]<<' ';
cout<<endl<<maxx;
return 0;
}

洛谷P2196例题分析的更多相关文章

  1. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  2. 洛谷——P1165 日志分析

    P1165 日志分析 题目描述 M 海运公司最近要对旗下仓库的货物进出情况进行统计.目前他们所拥有的唯一记录就是一个记录集装箱进出情况的日志.该日志记录了两类操作:第一类操作为集装箱入库操作,以及该次 ...

  3. 洛谷 P1165 日志分析

    题目描述 M 海运公司最近要对旗下仓库的货物进出情况进行统计.目前他们所拥有的唯一记录就是一个记录集装箱进出情况的日志.该日志记录了两类操作:第一类操作为集装箱入库操作,以及该次入库的集装箱重量:第二 ...

  4. 洛谷P2196 挖地雷 [2017年4月计划 动态规划13]

    P2196 挖地雷 题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之 ...

  5. 洛谷 p2196 挖地雷 题解

    好久没有写博客了,今天水几篇博客 传送门 挖地雷这个题之前在  信息学奥赛一本通  上做过几乎一样的题,但是由于数据太水导致我当时过了,进而导致我昨天(4.28)考试丢了20分,今天写一篇题解 这个挖 ...

  6. 洛谷P2196 挖地雷(dp)

    题意 题目链接 Sol 早年NOIP的题锅好多啊.. 这题连有向边还是无向边都没说(害的我wa了一遍) 直接\(f[i]\)表示到第\(i\)个点的贡献 转移的时候枚举从哪个点转移而来 然后我就用一个 ...

  7. 洛谷——P2196 挖地雷

    题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之后,某人可以从任一处 ...

  8. 洛谷—— P2196 挖地雷

    https://www.luogu.org/problem/show?pid=2196 题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定 ...

  9. 洛谷P2196 && caioj 1415 动态规划6:挖地雷

    没看出来动规怎么做,看到n <= 20,直接一波暴搜,过了. #include<cstdio> #include<cstring> #include<algorit ...

  10. 洛谷 P2196 挖地雷 & [NOIP1996提高组](搜索,记录路径)

    传送门 解题思路 就是暴力!!! 没什么好说的,总之,就是枚举每一个起点,然后暴力算一遍以这个点为起点的所有路径,在算的过程中,只要比目前找到的答案更优,就有可能是最后的答案,于是就把路径更新一遍,保 ...

随机推荐

  1. 【LeetCode第 313 场周赛】忘光光

    比赛链接 最近不怎么打比赛,不能马上反应过来考察的是什么,全部忘光光了... 6192. 公因子的数目 题意: 给定 \(a\) 和 \(b\),问两者的公因子数量 数据范围:\(1\leq a,b\ ...

  2. VScode开发STM32/GD32单片机-环境搭建

    1.软件下载 1.1.安装VSCode 1.2.下载安装VisualGDB 1.3.下载安装mingwin64 1.4.下载安装OpenOCD 1.5.下载GNU Arm Embedded Toolc ...

  3. kafka详解(二)--kafka为什么快

    前言 Kafka 有多快呢?我们可以使用 OpenMessaging Benchmark Framework 测试框架方便地对 RocketMQ.Pulsar.Kafka.RabbitMQ 等消息系统 ...

  4. [渲染层错误] [jsbridge] invoke remoteDebugInfo fail: too eayly.

    1.问题描述 建立新的小程序项目时.控制台报错 [渲染层错误] [jsbridge] invoke remoteDebugInfo fail: too eayly. 2.解决方法 修改调试基础库的版本 ...

  5. Request method ‘POST‘ not supported。 Failed to load resource: net::ERR_FAILED

    1.问题描述 技术栈:前后端项目分离(Springboot+Vue+MybatisPlus) 前端报错信息: 后端报错信息: 2.问题分析 这里使用了ResultFul风格的接口设计方式.增删改查对应 ...

  6. 齐博x1小程序集群必须带上固定的标志

    小程序集群的也类似登录接口一样,需要带上特殊的标志.建议是在所有请求的头部header 加上 wxappid 如下图所示,跟登录标志 token 并列在一起. 如果不方便修改头部header 请求的时 ...

  7. 驱动开发:内核测试模式过DSE签名

    微软在x64系统中推出了DSE保护机制,DSE全称(Driver Signature Enforcement),该保护机制的核心就是任何驱动程序或者是第三方驱动如果想要在正常模式下被加载则必须要经过微 ...

  8. Centos镜像下载

    1.进入官网,并点击下图所示的红框(alternative downloads) 官网网址:https://www.centos.org/download/  2.在往下翻,可以看到如下图的历史版本, ...

  9. 词云(WordCloud)

    WordCloud的参数: font_path:可用于指定字体路径 width:词云的宽度,默认为 400: height:词云的⾼度,默认为 200: mask:蒙版,可⽤于定制词云的形状: min ...

  10. HashMap基本使用方法

    HashMap Map集合基于 键(key)/值(value)映射.每个键最多只能映射一个值.键可以是任何引用数据类型的值,不可重复:值可以是任何引用数据类型的值,可以重复:键值对存放无序. Hash ...