AVL tree rotate
AVL tree
single rotate
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then set new root.
*/
void rotateWithLeftChild( AvlNode * & k2 )
{
AvlNode *k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = max( height( k2->left ), height( k2->right ) ) + 1;
k1->height = max( height( k1->left ), k2->height ) + 1;
k2 = k1;
}
k2
/ \
k1 z
/ \
x y
|
k1
/ \
x k2
| / \
y z
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then set new root.
*/
void rotateWithRightChild( AvlNode * & k1 )
{
AvlNode *k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = max( height( k1->left ), height( k1->right ) ) + 1;
k2->height = max( height( k2->right ), k1->height ) + 1;
k1 = k2;
}
k1
/ \
X k2
/ \
y z
|
-->
k2
/ \
k1 z
/ \ |
x y
doublerotate
/**
* Double rotate binary tree node: first left child.
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then set new root.
*/
void doubleWithLeftChild( AvlNode * & k3 )
{
rotateWithRightChild( k3->left );
rotateWithLeftChild( k3 );
}
k3
/ \
k1 d
/ \
a k2
/ \
b c
-->
k2
/ \
k1 k3
/ \ / \
a b c d
/**
* Double rotate binary tree node: first right child.
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then set new root.
*/
void doubleWithRightChild( AvlNode * & k1 )
{
rotateWithLeftChild( k1->right );
rotateWithRightChild( k1 );
}
k1
/ \
a k3
/ \
k2 d
/ \
b c
-->
k2
/ \
k1 k3
/ \ / \
a b c d
AVL tree rotate的更多相关文章
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- AVL Tree (1) - Definition, find and Rotation
1. 定义 (15-1) [AVL tree]: 一棵空二叉树是 AVL tree; 若 T 是一棵非空二叉树, 则 T 满足以下两个条件时, T 是一棵 AVL tree: T_LeftSubtre ...
- 04-树5 Root of AVL Tree
平衡二叉树 LL RR LR RL 注意画图理解法 An AVL tree is a self-balancing binary search tree. In an AVL tree, the he ...
- 1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child su ...
- AVL Tree Insertion
Overview AVL tree is a special binary search tree, by definition, any node, its left tree height and ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- pg高可用方案repmgr带witness搭建
一.总体架构 操作系统版本: linux redhat7.6pg版本: 12.2repmgr版本 5.2192.168.3.73 主库: repmgr+master192.168.3.74 从库1: ...
- 副三角形行列式转成上(下)三角形行列式为什么依次对换而不用第n行直接对换首行,第n-1行直接对换次行
副三角形行列式转成上(下)三角形行列式为什么依次对换而不用第n行直接对换首行,第n-1行直接对换次行 前言:重在记录,可能出错. 1. 简而言之,可以用第n行直接对换首行,第n-1行直接对换次行,直到 ...
- Cannot invoke "java.sql.Connection.prepareStatement(String)" because "conn" is null问题解决
HTTP状态 500 - 内部服务器错误 类型 异常报告 消息 Cannot invoke "java.sql.Connection.prepareStatement(String)&quo ...
- IntelliJ IDEA运行项目的时候提示 Command line is too long 错误
这时候你需要调整运行项目的配置,将 Configuration 中的 Shorten Command Line 修改为 JAR 就可以了.
- marker的存储组---layerGroup
1 <!DOCTYPE html> 2 <html lang="zh"> 3 <head> 4 <meta charset="U ...
- Mysql去重获取最新的一条数据
Mysql去重获取最新的一条数据 select * from yjzt_kindergartens r where id in (select max(id) from yjzt_kindergart ...
- go环境 依赖管理 基本命令
Go安装 Go官网下载地址:https://golang.org/dl/ Go官方镜像站(推荐):https://golang.google.cn/dl/ Windows 选择Windows版本下载安 ...
- git -----已经被跟踪文件如何在本地提交时忽略
git update-index --assume-unchanged C.md 注:忽略后将不再拉取和提交c.md这个文件 git update-index --no-assume-unchange ...
- 对NAN的认识
NaN是个特殊的数值,它与任何值都不相等,包括它自己,NaN==NaN和NaN===NaN都是false,如果想测试某个数字是否为NaN,可以使用内置的函数isNaN(),如果是NaN则返回true, ...
- cenots7 rpm 包升级ssh
rpm下载地址 也可以自行官网下载 链接: https://pan.baidu.com/s/1S945MehpmZbIriKK6l7Sfw 提取码: y5ua centos7rpm包升级ssh 逻辑思 ...