取出预训练模型中间层的输出(pytorch)
1 遍历子模块直接提取
对于简单的模型,可以采用直接遍历子模块的方法,取出相应name模块的输出,不对模型做任何改动。该方法的缺点在于,只能得到其子模块的输出,而对于使用nn.Sequensial()中包含很多层的模型,无法获得其指定层的输出。
示例 resnet18取出layer1的输出
from torchvision.models import resnet18
import torch model = resnet18(pretrained=True)
print("model:", model)
out = []
x = torch.randn(1, 3, 224, 224)
return_layer = "layer1"
for name, module in model.named_children():
x = module(x)
if name == return_layer:
out.append(x.data)
break
print(out[0].shape) # torch.Size([1, 64, 56, 56])
2 IntermediateLayerGetter类
torchvison中提供了IntermediateLayerGetter类,该方法同样只能得到其子模块的输出,而对于使用nn.Sequensial()中包含很多层的模型,无法获得其指定层的输出。
from torchvision.models._utils import IntermediateLayerGetter
IntermediateLayerGetter类的pytorch源码
class IntermediateLayerGetter(nn.ModuleDict):
"""
Module wrapper that returns intermediate layers from a model It has a strong assumption that the modules have been registered
into the model in the same order as they are used.
This means that one should **not** reuse the same nn.Module
twice in the forward if you want this to work. Additionally, it is only able to query submodules that are directly
assigned to the model. So if `model` is passed, `model.feature1` can
be returned, but not `model.feature1.layer2`. Args:
model (nn.Module): model on which we will extract the features
return_layers (Dict[name, new_name]): a dict containing the names
of the modules for which the activations will be returned as
the key of the dict, and the value of the dict is the name
of the returned activation (which the user can specify).
"""
_version = 2
__annotations__ = {
"return_layers": Dict[str, str],
} def __init__(self, model: nn.Module, return_layers: Dict[str, str]) -> None:
if not set(return_layers).issubset([name for name, _ in model.named_children()]):
raise ValueError("return_layers are not present in model")
orig_return_layers = return_layers
return_layers = {str(k): str(v) for k, v in return_layers.items()} # 重新构建backbone,将没有使用到的模块全部删掉
layers = OrderedDict()
for name, module in model.named_children():
layers[name] = module
if name in return_layers:
del return_layers[name]
if not return_layers:
break super(IntermediateLayerGetter, self).__init__(layers)
self.return_layers = orig_return_layers def forward(self, x: Tensor) -> Dict[str, Tensor]:
out = OrderedDict()
for name, module in self.items():
x = module(x)
if name in self.return_layers:
out_name = self.return_layers[name]
out[out_name] = x
return out
示例 使用IntermediateLayerGetter类 改 resnet34+unet 完整代码见gitee
import torch
from torchvision.models import resnet18, vgg16_bn, resnet34
from torchvision.models._utils import IntermediateLayerGetter model = resnet34()
stage_indices = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
return_layers = dict([(str(j), f"stage{i}") for i, j in enumerate(stage_indices)])
model= IntermediateLayerGetter(model, return_layers=return_layers)
input = torch.randn(1, 3, 224, 224)
output = model(input)
print([(k, v.shape) for k, v in output.items()])
3 create_feature_extractor函数
使用create_feature_extractor方法,创建一个新的模块,该模块将给定模型中的中间节点作为字典返回,用户指定的键作为字符串,请求的输出作为值。该方法比 IntermediateLayerGetter方法更通用, 不局限于获得模型第一层子模块的输出。比如下面的vgg,池化层都在子模块feature中,上面的方法无法取出,因此推荐使用create_feature_extractor方法。
示例 FCN论文中以vgg为backbone,分别取出三个池化层的输出

import torch
from torchvision.models import vgg16_bn
from torchvision.models.feature_extraction import create_feature_extractor model = vgg16_bn()
model = create_feature_extractor(model, {"features.43": "pool5", "features.33": "pool4", "features.23": "pool3"})
input = torch.randn(1, 3, 224, 224)
output = model(input)
print([(k, v.shape) for k, v in output.items()])
4 hook函数
hook函数是程序中预定义好的函数,这个函数处于原有程序流程当中(暴露一个钩子出来)。我们需要再在有流程中钩子定义的函数块中实现某个具体的细节,需要把我们的实现,挂接或者注册(register)到钩子里,使得hook函数对目标可用。hook 是一种编程机制,和具体的语言没有直接的关系。
Pytorch的hook编程可以在不改变网络结构的基础上有效获取、改变模型中间变量以及梯度等信息。在pytorch中,Module对象有register_forward_hook(hook) 和 register_backward_hook(hook) 两种方法,两个的操作对象都是nn.Module类,如神经网络中的卷积层(nn.Conv2d),全连接层(nn.Linear),池化层(nn.MaxPool2d, nn.AvgPool2d),激活层(nn.ReLU)或者nn.Sequential定义的小模块等。register_forward_hook是获取前向传播的输出的,即特征图或激活值; register_backward_hook是获取反向传播的输出的,即梯度值。(这边只讲register_forward_hook,其余见链接)
示例 获取resnet18的avgpool层的输入输出
import torch
from torchvision.models import resnet18 model = resnet18()
fmap_block = dict() # 装feature map
def forward_hook(module, input, output):
fmap_block['input'] = input
fmap_block['output'] = output layer_name = 'avgpool'
for (name, module) in model.named_modules():
if name == layer_name:
module.register_forward_hook(hook=forward_hook) input = torch.randn(64, 3, 224, 224)
output = model(input)
print(fmap_block['input'][0].shape)
print(fmap_block['output'].shape)
参考
2. Pytorch的hook技术——获取预训练/已训练好模型的特定中间层输出
取出预训练模型中间层的输出(pytorch)的更多相关文章
- 【tf.keras】tf.keras加载AlexNet预训练模型
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...
- Pytorch——BERT 预训练模型及文本分类
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...
- pytorch预训练模型的下载地址以及解决下载速度慢的方法
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 R ...
- PyTorch保存模型与加载模型+Finetune预训练模型使用
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...
- [Pytorch]Pytorch加载预训练模型(转)
转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练 ...
- 【小白学PyTorch】5 torchvision预训练模型与数据集全览
文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...
- pytorch中修改后的模型如何加载预训练模型
问题描述 简单来说,比如你要加载一个vgg16模型,但是你自己需要的网络结构并不是原本的vgg16网络,可能你删掉某些层,可能你改掉某些层,这时你去加载预训练模型,就会报错,错误原因就是你的模型和原本 ...
- XLNet预训练模型,看这篇就够了!(代码实现)
1. 什么是XLNet XLNet 是一个类似 BERT 的模型,而不是完全不同的模型.总之,XLNet是一种通用的自回归预训练方法.它是CMU和Google Brain团队在2019年6月份发布的模 ...
- PyTorch-网络的创建,预训练模型的加载
本文是PyTorch使用过程中的的一些总结,有以下内容: 构建网络模型的方法 网络层的遍历 各层参数的遍历 模型的保存与加载 从预训练模型为网络参数赋值 主要涉及到以下函数的使用 add_module ...
- 最强 NLP 预训练模型库 PyTorch-Transformers 正式开源:支持 6 个预训练框架,27 个预训练模型
先上开源地址: https://github.com/huggingface/pytorch-transformers#quick-tour 官网: https://huggingface.co/py ...
随机推荐
- Docker--在 Jenkins 容器上的搭建持续集成环境和完成自动化测试
本文转自:https://www.cnblogs.com/poloyy/p/13955641.html Jenkins 初始化流程 访问 Jenkins 查看本机 IP ifconfig 查看容器运行 ...
- RMAN架构
关于 RMAN 环境 Recovery Manager 环境由在备份和恢复策略中发挥作用的各种应用程序和数据库组成. RMAN 环境的组件 组件 描述 RMAN 客户端 管理目标数据库的备份和恢复操作 ...
- 进程间通信-信号-pipe-fifo
一.实验截图 (一)fifo (二)pipe (三)signal 二.实验代码 fifo //consumer #include <stdio.h> #include <stdlib ...
- MFC工程调用cJSON.c出现C1853错误的解决办法(老版本C文件加入新的C++项目)
环境 Visual Studio 2017 现象 头文件cJSON.h与源文件cJSON.c添加入工程后,编译出现如下C1853错误. cjson.c : fatal error C1853: &qu ...
- Study python_03
函数 基本思想---函数是用来重复使用的 def shili(input_): print("我了个去 %s"%input_) shili('你竟然') 当一个函数中即有默认参数, ...
- Tomcat put 漏洞批量工具
工具下载 https://share.weiyun.com/96ffd3bf26b09ffece8d01317f3b3efb
- CSR,SSR,PreRender原理解密
CSR.SSR.Prerender 原理全解密 做前端的同学们肯定或多或少听说过CSR,SSR,Prerender这些名词,但是大多肯定只是停留在听说过,了解过,略懂一点,但是,你真的理解这些技术 ...
- <鸳鸯刀>&<白马啸西风>随笔
这两部作品比较小众,也不如之前的作品优秀,因此简单写一下好了. <鸳鸯刀> 陕西西安府威信镖局的总镖头."铁鞭镇八方"周威信,带领一支七十多人的镖队正前往京城.路途之上 ...
- 第三阶段Blog
题目集7~9的总结性Blog 1.前言 一个月又过去了,又到了写blog的时候,相较于前两次Blog,这一次所要分析的内容从原先的侧重于类设计到了这次的侧重于结构设计.在完成作业的时候,尽管题目内提供 ...
- MarkDown初次见面——
Markdown基础语法 分级标题 n级标题就在前面加n个#即可,但是仅支持到六级标题. 字体 柔骨兔 字体倾斜:左右两边加1个* 柔骨兔 字体加粗:左右两边各自添加2个* 柔骨兔 倾斜加粗:左右两边 ...