20145208 GDB调试汇编堆栈过程分析

测试代码

#include<stdio.h>

short addend1 = 1;
static int addend2 = 2;
const static long addend3 = 3; static int g(int x)
{
return x + addend1;
} static const int f(int x)
{
return g(x + addend2);
} int main(void)
{
return f(8) + addend3;
}

分析过程

  • 使用gcc -g example.c -o example -m32指令在64位的机器上产生32位汇编,然后使用gdb example指令进入gdb调试器

  • 进入之后先在main函数处设置一个断点,再run一下,使用disassemble指令获取汇编代码,用i(info) r(registers)指令查看各寄存器的值:

  • 可见此时主函数的栈基址为 0xffffcf98,用x(examine)指令查看内存地址中的值,但目前%esp所指堆栈内容为0,%ebp所指内容也为0

  • 首先,结合display命令和寄存器或pc内部变量,做如下设置:display /i $pc,这样在每次执行下一条汇编语句时,都会显示出当前执行的语句。下面展示每一步时%esp%ebp和堆栈内容的变化:

  • call指令将下一条指令的地址入栈,此时%esp,%ebp和堆栈的值为:

  • 将上一个函数的基址入栈,从当前%esp开始作为新基址:

  • 先为传参做准备:

  • 实参的计算在%eax中进行:

  • f函数的汇编代码:

  • 实参入栈:

  • call指令将下一条指令的地址入栈:

  • 计算short+int:

  • pop %ebp指令将栈顶弹到%ebp中,同时%esp增加4字节:

  • ret指令将栈顶弹给%eip

  • 因为函数f修改了%esp,所以用leave指令恢复。leave指令先将%esp对其到%ebp,然后把栈顶弹给%ebp

  • 主函数汇编代码:

指令 %esp %ebp %eip %eax 堆栈
push $0x8 0xffffcf98 0xffffcf98 0x804840b -134500932 0x0
call 0x80483ef 0xffffcf94 0xffffcf98 0x804840b -134500932 0x8 0x0
push %ebp 0xffffcf90 0xffffcf98 0x80483ef -134500932 0x8048412 0x8 0x0
mov %esp,%ebp 0xffffcf8c 0xffffcf98 0x80483f0 -134500932 0xffffcf98 0x8048412 0x8 0x0
mov 0x804a01c,%edx 0xffffcf8c 0xffffcf8c 0x80483f2 -134500932 0xffffcf98 0x8048412 0x8 0x0
mov 0x8(%ebp),%eax 0xffffcf8c 0xffffcf8c 0x80483f8 -134500932 0xffffcf98 0x8048412 0x8 0x0
add %edx,%eax 0xffffcf8c 0xffffcf8c 0x80483fb 8 0xffffcf98 0x8048412 0x8 0x0
push %eax 0xffffcf8c 0xffffcf8c 0x80483fd 10 0xffffcf98 0x8048412 0x8 0x0
call 0x80483db 0xffffcf88 0xffffcf8c 0x80483fe 10 0xa 0xffffcf98 0x8048412 0x8 0x0
push %ebp 0xffffcf84 0xffffcf8c 0x80483db 10 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
mov %esp,%ebp 0xffffcf80 0xffffcf8c 0x80483dc 10 0xffffcf8c 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
movzwl 0x804a018,%eax 0xffffcf80 0xffffcf80 0x80483de 10 0xffffcf8c 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
movswl %ax,%edx 0xffffcf80 0xffffcf80 0x80483e5 1 0xffffcf8c 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
mov 0x8(%ebp),%eax 0xffffcf80 0xffffcf80 0x80483e8 1 0xffffcf8c 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
add %edx,%eax 0xffffcf80 0xffffcf80 0x80483eb 10 0xffffcf8c 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
pop %ebp 0xffffcf80 0xffffcf80 0x80483ed 11 0xffffcf8c 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
ret 0xffffcf84 0xffffcf8c 0x80483ee 11 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
add $0x4,%esp 0xffffcf88 0xffffcf8c 0x8048403 11 0x8048403 0xa 0xffffcf98 0x8048412 0x8 0x0
leave 0xffffcf8c 0xffffcf8c 0x8048406 11 0xffffcf98 0x8048412 0x8 0x0
ret 0xffffcf90 0xffffcf98 0x8048407 11 0x8048412 0x8 0x0
add $0x4,%esp 0xffffcf94 0xffffcf98 0x8048412 11 0x8 0x0
mov $0x3,%edx 0xffffcf98 0xffffcf98 0x8048415 11 0x0
add %edx,%eax 0xffffcf98 0xffffcf98 0x804841a 11 0x0
leave 0xffffcf98 0xffffcf98 0x804841c 14 0x0
ret 0xffffcf9c 0x0 0x804841d 14

20145208 GDB调试汇编堆栈过程分析的更多相关文章

  1. GDB调试汇编堆栈过程分析

    GDB调试汇编堆栈过程分析 分析过程 这是我的C源文件:click here 使用gcc - g example.c -o example -m32指令在64位的机器上产生32位汇编,然后使用gdb ...

  2. 20145212——GDB调试汇编堆栈过程分析

    GDB调试汇编堆栈过程分析 测试代码 #include <stdio.h> short val = 1; int vv = 2; int g(int xxx) { return xxx + ...

  3. 20145223《信息安全系统设计基础》 GDB调试汇编堆栈过程分析

    20145223<信息安全系统设计基础> GDB调试汇编堆栈过程分析 分析的c语言源码 生成汇编代码--命令:gcc -g example.c -o example -m32 进入gdb调 ...

  4. 赵文豪 GDB调试汇编堆栈过程分析

    GDB调试汇编堆栈过程分析 使用gcc - g example.c -o example -m32指令在64位的机器上产生32位汇编,然后使用gdb example指令进入gdb调试器: 使用gdb调 ...

  5. 20145337 GDB调试汇编堆栈过程分析

    20145337 GDB调试汇编堆栈过程分析 测试代码 #include<stdio.h> short addend1 = 1; static int addend2 = 2; const ...

  6. 20145218 GDB调试汇编堆栈过程分析

    GDB调试汇编堆栈过程分析 虚拟机中分析过程 输入gcc - g example.c -o example -m32指令在64位机器上产生32位汇编,但出现以下错误: 这时需要使用sudo apt-g ...

  7. 20145236 GDB调试汇编堆栈过程分析

    GDB调试汇编堆栈过程分析 首先需要输入sudo apt-get install libc6-dev-i386安装一个库才能产生汇编代码,然后输入gcc - g example.c -o exampl ...

  8. 20145312 GDB调试汇编堆栈过程分析

    20145312 GDB调试汇编堆栈过程分析 参考资料 卢肖明同学的博客:<GDB调试汇编堆栈过程分析>: http://www.cnblogs.com/lxm20145215----/p ...

  9. 20145240 GDB调试汇编堆栈过程分析

    20145240 GDB调试汇编堆栈过程分析 测试代码 #include<stdio.h> short addend1 = 1; static int addend2 = 2; const ...

随机推荐

  1. WAMPServer安装和配置

    1. 下载地址:  www.wampserver.com    www.php100.com 本机下载在 安装在 2. 自定义网站根目录 设置到这里 访问localhost就会访问到自定义的目录了假设 ...

  2. Promise和$.Deferred总结

    语法对比: Promise .then(f).catch(f)是.then(f,f)的语法糖 .all([A,B,C])等最慢的     .race([A,B,C])最快的 $.Deferred .d ...

  3. 【单页应用之通信机制】view之间应该如何通信

    前言 在单页应用中,view与view之间的通信机制一直是一个重点,因为单页应用的所有操作以及状态管理全部发生在一个页面上 没有很好的组织的话很容易就乱了,就算表面上看起来没有问题,事实上会有各种隐忧 ...

  4. css实现图片切换

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta http ...

  5. bootstrap无限级分类 jq拓展 之前的无限级分类的封装版~

    git地址:https://github.com/zhangjiahao93/jQ.select HTML部分 <!DOCTYPE html> <html> <head ...

  6. 轻松掌握:JavaScript观察者模式

    观察者模式 观察者模式也叫"订阅者/发布者"模式,定义对象间的一种一对多的依赖关系,发布者可以向所有订阅者发布消息. 观察者模式被广泛地应用于JavaScript客户端编程中.所有 ...

  7. Linux安全基础:grep命令的使用

    grep (缩写来自Globally search a Regular Expression and Print)是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来.Unix的 ...

  8. C# 生成字符串的 CheckSum

    C# 生成字符串的 CheckSum private static string CheckSum(string message) { char[] chars = message.ToCharArr ...

  9. Android 四大组件之再论BroadCast

    BroadCast 是android提供的跨进程通讯的有一利器. 1.异步执行onReceiver @Nullable public abstract Intent registerReceiver( ...

  10. 我对uml类图关系的理解

    uml类图的关系: 泛化关系也就是继承. 实现关系就是一个类实现另外一个接口. 依赖关系就是一个类使用了另外一个类,是一种使用关系,在这个类的某个服务中需要另外一个类来协助. 关联关系就是一类拥有另外 ...