HDU 5212 Code【莫比乌斯反演】
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5212
题意:
给定序列,1≤i,j≤n,求gcd(a[i],a[j])∗(gcd(a[i],a[j])−1)之和。
分析:
同样我们设
f(d):满足gcd(x,y)=d且x,y均在给定范围内的(x,y)的对数。
F(d):满足d|gcd(x,y)且x,y均在给定范围内的(x,y)的对数。
反演后我们得到
由于序列给定,这里的F(d)我们可以通过枚举d,来找d的倍数的个数,那么F(d)=cnt[d]∗cnt[d],枚举最大公约数求出f(d),那么答案即为f(d)∗d∗(d−1)的和。时间复杂度O(nlogn)。
代码:
/*
-- Hdu 5212
-- mobius
-- Create by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 1e4+ 5 , mod = 1e4 + 7;
int tot = 0;
int miu[maxn], prime[maxn], a[maxn];
int cnt[maxn], F[maxn];
bool flag[maxn];
void mobius()
{
miu[1] = 1;
tot = 0;
for(int i = 2; i < maxn; i++){
if(!flag[i]){
prime[tot++] = i;
miu[i] = -1;
cnt[i] = 1;
}
for(int j = 0; j < tot && i * prime[j] < maxn; j++){
flag[i * prime[j]] = true;
cnt[i * prime[j]] = cnt[i] + 1;
if(i % prime[j]){
miu[i * prime[j]] = -miu[i];
}
else{
miu[i * prime[j]] = 0;
break;
}
}
}
}
int main (void)
{
mobius();
int n;
while(~sa(n)){
int maxa = 0;
memset(cnt, 0, sizeof(cnt));
memset(F, 0, sizeof(F));
for(int i = 0; i < n; i++) {
sa(a[i]);
cnt[a[i]]++;
maxa = max(maxa, a[i]);
}
for(int i = 1; i <= maxa; i++){
for(int j = i; j <= maxa; j += i){
F[i] += cnt[j];
}
}
ll ans = 0;
ll tmp = 0;
for(int i = 1; i <= maxa; i++){
tmp = 0;
for(int j = i; j <= maxa; j += i){
tmp += miu[j/ i] * F[j] * 1ll * F[j] % mod;
}
ans =( ans + tmp * 1ll * i % mod * (i - 1)% mod) % mod;
}
printf("%I64d\n", ans);
}
return 0;
}
HDU 5212 Code【莫比乌斯反演】的更多相关文章
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- HDU 5212 Code (莫比乌斯反演)
题意:给定上一个数组,求 析: 其中,f(d)表示的是gcd==d的个数,然后用莫比乌斯反演即可求得,len[i]表示能整队 i 的个数,可以线性筛选得到, 代码如下: #pragma comment ...
- POJ3094 Sky Code(莫比乌斯反演)
POJ3094 Sky Code(莫比乌斯反演) Sky Code 题意 给你\(n\le 10^5\)个数,这些数\(\le 10^5\),问这些这些数组成的互不相同的无序四元组(a,b,c,d)使 ...
- HDU 4746 Mophues (莫比乌斯反演应用)
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
http://poj.org/problem?id=3904 题意:给一些数,求在这些数中找出四个数互质的方案数. 莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...
- Mophues HDU - 4746 (莫比乌斯反演)
Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...
随机推荐
- 万门大学Python零基础10天进阶班视频教程
点击了解更多Python课程>>> 万门大学Python零基础10天进阶班视频教程 课程简介: 旨在通过两周的学习,让学生不仅能掌握python编程基础从而进行计算机程序的开发, 还 ...
- Win2008 Server配置PHP环境
Win2008 Server配置PHP环境 阅读目录 创建一个网站 配置PHP环境 配置iis的“处理应用程序映射” 在配置PHP环境之前要先配置好IIS. 传送门-> Win2008 Se ...
- MIP启发式算法:Variable neighborhood search
*本文主要记录和分享学习到的知识,算不上原创. *参考文章见链接. 本文主要讲述启发式算法中的变邻域搜索(Variable neighborhood search).变邻域搜索的特色在于邻域结构的可变 ...
- LA 7048 Coprime 莫比乌斯反演
题意: 给出\(n(n \leq 10^5)\)个数字\(a_i(a_i \leq 10^5)\),从中选出\(3\)个数,使得这\(3\)个数两两互质或者两两不互质 分析: 可以说这是<训练指 ...
- XP系统连接win10家庭版共享的打印机方法
1.高级共享设置.按照win7正常设置."家庭网络"公用网络”“工作网络”之类的注意根据当前配置设置! 2.由于控制面板无法开启Guest账户.需要用任务管理器,运行cmd(管理员 ...
- 【MySQL】MySQL备份和恢复
一.为什么要备份数据 在生产环境中我们数据库可能会遭遇各种各样的不测从而导致数据丢失, 大概分为以下几种. 硬件故障 软件故障 自然灾害 黑客攻击 误操作 (占比最大) 所以, 为了在数据丢失之后能够 ...
- python基础补漏-07-正则表达式
字符: . 匹配除了换行符以外的任意字符 \w 匹配字母或者数字或下划线或汉字(除了特殊字符外都能匹配) \s 匹配任意空白符 \d 匹配数字 \b 匹配单词的开始或者结束 ^ 匹配字符串 ...
- [python学习篇][廖雪峰][1]高级特性--创建生成器 方法2 yield
def fib(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 将print b 改成yield ...
- [uiautomator篇][9]遇到问题
1 (1) 修改apk的存储权限,不要创建文件会提示:文件找不到 (2) 退出应用 mDevice.executeShellCommand("am force-stop com.antutu ...
- javascript学习笔记 - 执行环境及作用域
一 执行环境(环境) 1.每个执行环境都有一个关联的全局变量对象.例如:web浏览器中,window对象为全局变量对象.环境中定义的所有变量和函数都保存在该对象中.全局执行环境是最外围的环境. 2.执 ...