思路:

用vector存一下各种颜色的区间,每次处理颜色的区间,相同颜色不需要更新。区间最多1e6个没错,但是随着颜色的更替区间只会越来越少。

维护区间左右两端的颜色,lazy一下。

区间合并的时候 sum= sum_left + sum_right , 如果左儿子的区间右边和右儿子的区间左边颜色相同 sum--。



复杂度:don't know;

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10; struct Seg{
int Sum;
int Lazy;
int Left,Right;
int Left_Color,Right_Color;
}q[N*4]; struct asd{
int Left,Right;
};
vector<asd>eg[1000000+10];
int col[N]; void Pushdown(int num)
{
if(q[num].Lazy==-1) return;
q[num<<1].Lazy=q[num<<1|1].Lazy=q[num].Lazy;
q[num<<1].Sum=q[num<<1|1].Sum=1;
q[num<<1].Left_Color=q[num<<1].Right_Color=q[num].Lazy;
q[num<<1|1].Left_Color=q[num<<1|1].Right_Color=q[num].Lazy;
q[num].Lazy=-1;
} void Build(int num,int Left,int Right)
{
q[num].Left=Left;q[num].Right=Right;q[num].Lazy=-1;
if(Left == Right){
q[num].Sum=1;
q[num].Left_Color=q[num].Right_Color=col[Left];
return;
}
int Mid=(Left+Right)>>1;
Build(num<<1,Left,Mid);
Build(num<<1|1,Mid+1,Right);
q[num].Left_Color=q[num<<1].Left_Color;
q[num].Right_Color=q[num<<1|1].Right_Color;
if(q[num<<1].Right_Color == q[num<<1|1].Left_Color)
q[num].Sum=q[num<<1].Sum+q[num<<1|1].Sum-1;
else
q[num].Sum=q[num<<1].Sum+q[num<<1|1].Sum;
} int Query(int num,int Left,int Right)
{
if(q[num].Left>=Left && q[num].Right<=Right) return q[num].Sum;
Pushdown(num); int Mid=(q[num].Left+q[num].Right)>>1;
if(Mid>=Right)
return Query(num<<1,Left,Right);
else if(Mid<Left)
return Query(num<<1|1,Left,Right);
else{
int ans=0;
ans+=Query(num<<1,Left,Mid);
ans+=Query(num<<1|1,Mid+1,Right);
if(q[num<<1].Right_Color == q[num<<1|1].Left_Color) ans--;
return ans;
}
} void Update(int num,int Left,int Right,int Color)
{
if(Left<=q[num].Left && q[num].Right<=Right){
q[num].Lazy=Color;
q[num].Sum=1;
q[num].Left_Color=q[num].Right_Color=Color;
return;
}
Pushdown(num); int Mid=(q[num].Left+q[num].Right)>>1;
if(Mid>=Right)
Update(num<<1,Left,Right,Color);
else if(Mid<Left)
Update(num<<1|1,Left,Right,Color);
else
{
Update(num<<1,Left,Mid,Color);
Update(num<<1|1,Mid+1,Right,Color);
}
q[num].Left_Color=q[num<<1].Left_Color;
q[num].Right_Color=q[num<<1|1].Right_Color;
q[num].Sum=q[num<<1].Sum+q[num<<1|1].Sum;
if(q[num<<1].Right_Color == q[num<<1|1].Left_Color) q[num].Sum--;
} void init(int n)
{
for(int i=0;i<=1000000;i++)
eg[i].clear(); asd temp;
int Color,Pre_Color=-1;
for(int i=1;i<=n;i++)
{
scanf("%d",&Color);
col[i]=Color;
if(Pre_Color==-1){
temp.Left=i;
Pre_Color=Color;
}
else if(Pre_Color!=Color){
temp.Right=i-1;
eg[Pre_Color].push_back(temp);
temp.Left=i;
Pre_Color=Color;
}
}
temp.Right=n;
eg[Pre_Color].push_back(temp); Build(1,1,n);
} void solve(int n)
{
asd temp;
int Left,Right,x,y;
int op;
while(n--)
{
scanf("%d",&op);
if(op==1)
{
scanf("%d%d",&x,&y);
if(x==y) continue; int sz=eg[x].size();
for(int i=0;i<sz;i++)
{
temp=eg[x][i];
Update(1,temp.Left,temp.Right,y);
eg[y].push_back(eg[x][i]);
}
eg[x].clear();
}
else
{
scanf("%d%d",&Left,&Right);
printf("%d\n",Query(1,Left,Right));
}
}
} int main()
{
int n,T,Q;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&Q);
init(n);
solve(Q);
}
return 0;
}

HDU5997 【线段树】的更多相关文章

  1. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  2. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  3. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  4. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  5. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  6. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  7. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  8. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  9. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  10. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

随机推荐

  1. The type List is not generic(转载)

    错误:The type List is not generic; it cannot be parameterized with arguments <Activity> 代码如下: pu ...

  2. Oracle学习(十三):闪回

    1.知识点:能够对比以下的录屏进行阅读 SQL> --1. 错误地删除了记录 SQL> --2. 错误地删除了表 SQL> --3. 查询历史记录 SQL> --4. 怎样撤销 ...

  3. Leetcode 001-twosum

    #Given an array of integers, return indices of the two numbers such that they add up to a specific t ...

  4. php 面向对象的三大要素(封装、继承、多态)以及重写(override)和重载(overload)的举例说明

    PHP是一种HTML内嵌式的,用来制作动态网页的服务器端的脚本语言.其特点是:开发周期短,稳定安全,简单易学,免费开源,良好的跨平台特性.PHP是一种面向对象的程序设计语言,目前已成为全球最受欢迎的五 ...

  5. please add a 'mainClass’ property

    when build an spring project with this command: mvn spring-boot:run there will may show an error mes ...

  6. 编写灵活、稳定、高质量的 HTML 和 CSS 代码的规范。

      引用地址http://codeguide.bootcss.com/#html-ie-compatibility-mode <!DOCTYPE html> <html lang=& ...

  7. appium(13)- server config

    //本文讲解:启动server时,如何配置capabilities 和 flag.可以将不同client端需要的通用的capabilities都放到server端配置. Requirements In ...

  8. 快速解决Android中的selinux权限问题【转】

    本文转载自:http://blog.csdn.net/mike8825/article/details/49428417 版权声明:本文为博主原创文章,未经博主允许不得转载. 关于selinux的详细 ...

  9. Retina屏幕下image-set

    实现Retina屏幕下图像的显示方法,还特别给我截取了一段代码: .soso .logo .qqlogo { display: block; width: 134px; height: 44px; b ...

  10. 我在面试.NET/C#程序员时会提出的问题

    我在面试.NET/C#程序员时会提出的问题 2011-03-03 15:38 by 老赵, 28107 visits 说起来我也面试过相当数量的.NET(包括C#,后文不重复)程序员了,有的通过电话, ...