6450 Social Advertising
You have decided to start up a new social networking company. Other existing popular social networks
already have billions of users, so the only way to compete with them is to include novel features no
other networks have.
Your company has decided to market to advertisers a cheaper way to charge for advertisements (ads).
The advertiser chooses which users’ “wall” the ads would appear on, and only those ads are charged.
When an ad is posted on a user’s wall, all of his/her friends (and of course the user himself/herself)
will see the ad. In this way, an advertiser only has to pay for a small number of ads to reach many
more users.
You would like to post ads to a particular group of users with the minimum cost. You already have
the “friends list” of each of these users, and you want to determine the smallest number of ads you have
to post in order to reach every user in this group. In this social network, if A is a friend of B, then B
is also a friend of A for any two users A and B.
Input
The input consists of multiple test cases. The first line of input is a single integer, not more than
10, indicating the number of test cases to follow. Each case starts with a line containing an integer n
(1 ≤ n ≤ 20) indicating the number of users in the group. For the next n lines, the ith line contains the
friend list of user i (users are labelled 1, . . . , n). Each line starts with an integer d (0 ≤ d < n) followed
by d labels of the friends. No user is a friend of himself/herself.
Output
For each case, display on a line the minimum number of ads needed to be placed in order for them to
reach the entire group of users.
Sample Input
2
5
4 2 3 4 5
4 1 3 4 5
4 1 2 4 5
4 1 2 3 5
4 1 2 3 4
5
2 4 5
2 3 5
1 2
2 1 5
3 1 2 4
Sample Output
1
2

题目大意:打广告搞宣传,有许多朋友关系,一个人做一下广告可以让他的n个朋友还有他自己看到。求找最少的做广告的人。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std; const int maxn=;
int n,flag;
vector<int> f[maxn];
int vis[maxn];
int cnt[maxn]; bool is_ok(int s)
{
memset(vis,,sizeof(vis));
int i,j,sum=;
for(i=;i<s;i++)
{
if(!vis[cnt[i]])
{
vis[cnt[i]]=;sum++;
}
for(j=;j<f[cnt[i]].size();j++)
{
if(!vis[f[cnt[i]][j]])
{
vis[f[cnt[i]][j]]=;sum++;
}
}
}
if(sum==n) return ;
return ;
} void dfs(int now,int s,int dep)
{
if(now>n+) return ;
if(s==dep)
{
if(is_ok(s)) flag=;
return ;
}
cnt[s]=now;
dfs(now+,s+,dep);
dfs(now+,s,dep);
}
int main()
{
int t,i,k,p;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=;i<=n;i++) f[i].clear();
for(i=;i<=n;i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&p);
f[i].push_back(p);f[p].push_back(i);
}
}
flag=;
for(i=;i<=n;i++)
{
dfs(,,i);
if(flag) break;
}
printf("%d\n",i);
}
return ;
}

LA 6450 social advertising(dfs剪枝)的更多相关文章

  1. LA 6450 Social Advertising

    [题目] 给一个无向图,每当对某个点操作,该点以及与该点相连的点都获得标记,问标记所有点至少需要操作多少次 输入 第一行为T,表示测试数据组数 每组测试数据第一行为n(1<=n<=20)表 ...

  2. UVALive 6450 Social Advertising DFS解法

    题意:一些人有朋友关系,在某个人的社交网站上投放广告可以被所有该人的直接朋友看到,问最小投放多少个广告使给出的人都看到广告.(n<=20) 解法:看到n的范围可以想到用二进制数表示每个人被覆盖与 ...

  3. LA 6476 Outpost Navigation (DFS+剪枝)

    题目链接 Solution DFS+剪枝 对于一个走过点k,如果有必要再走一次,那么一定是走过k后在k点的最大弹药数增加了.否则一定没有必要再走. 记录经过每个点的最大弹药数,对dfs进行剪枝. #i ...

  4. *HDU1455 DFS剪枝

    Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  5. POJ 3009 DFS+剪枝

    POJ3009 DFS+剪枝 原题: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16280 Acce ...

  6. poj 1724:ROADS(DFS + 剪枝)

    ROADS Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10777   Accepted: 3961 Descriptio ...

  7. DFS(剪枝) POJ 1011 Sticks

    题目传送门 /* 题意:若干小木棍,是由多条相同长度的长木棍分割而成,问最小的原来长木棍的长度: DFS剪枝:剪枝搜索的好题!TLE好几次,终于剪枝完全! 剪枝主要在4和5:4 相同长度的木棍不再搜索 ...

  8. DFS+剪枝 HDOJ 5323 Solve this interesting problem

    题目传送门 /* 题意:告诉一个区间[L,R],问根节点的n是多少 DFS+剪枝:父亲节点有四种情况:[l, r + len],[l, r + len - 1],[l - len, r],[l - l ...

  9. HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)

    Counting Cliques Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. 第一单元OO总结

  2. Nuget使用备忘

    菜单:工具-库程序包管理器-管理解决方案的NuGet程序包,搜索,下载,安装 或者 工具-库程序包管理器-程序包管理器控制台,输入PM命令,如: install-package log4net 如果不 ...

  3. python入门:print打印输出的用法

    #!/usr/bin/python # -*- coding:utf-8 -*- # print打印输出的用法 print("holle,world!") print(1) pri ...

  4. 百度地图和高德地图的API视频教程

    学习地址: http://www.houdunren.com/houdunren18_lesson_152?vid=10228 素材地址: https://gitee.com/houdunwang/v ...

  5. python GIL锁、进程池与线程池、同步异步

    一.GIL全局解释器锁 全局解释器锁 在CPython中,全局解释器锁(GIL)是一个互斥锁,它可以防止多个本机线程同时执行Python代码.之所以需要这个锁,主要是因为CPython的内存管理不是线 ...

  6. MySQL练习50题

    介绍一个学习SQL的网站:https://sqlbolt.com/ 习题来源于网络,SQL语句是自己的练习答案,部分参考了网络上的答案. 花了一晚上的时间做完,个人认为其中的难点有:分组提取前几名的数 ...

  7. arm的开发工具

    网上有free的ide可以开发arm cortex的芯片,可以参考List of ARM Cortex-M development tools,Wikipedia,里面有emIDE,embitz等,虽 ...

  8. UVa 1630 区间DP Folding

    一个字符串如果能简写,要么是重复多次,按题中的要求简写:要么是左右两个部分分别简写后再拼起来. dp(i, j)表示字串(i, j)所能被简写的最短的字符串. 判断一个字符串是否为周期串以及求出它的周 ...

  9. JavaScript 将当地时间转换成其它时区

    毫无疑问,用JavaScript脚本可以通过直接查看用户的时钟,方便地在网页上显示本地时间. 但是,如果你想显示不同地区的时间—--例如,如果你的本部在别的国家,你想查看“本国”时间而非当地时间,又该 ...

  10. java静态代理模式

    代理模式分为动态代理和静态代理. 静态代理简述: 1.为其他对象提供一种代理,以控制对这个对象的访问. 2.代理对象会起到中介的作用,可以增加些功能,也可以去掉某些功能. 静态代理: 代理和被代理对象 ...