Problem Description
Soda has a bipartite graph with n vertices
and m undirected
edges. Now he wants to make the graph become a complete bipartite graph with most edges by adding some extra edges. Soda needs you to tell him the maximum number of edges he can add.



Note: There must be at most one edge between any pair of vertices both in the new graph and old graph.
 
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤100),
indicating the number of test cases. For each test case:



The first line contains two integers n and m, (2≤n≤10000,0≤m≤100000).



Each of the next m lines
contains two integer u,v (1≤u,v≤n,v≠u) which
means there's an undirected edge between vertex u and
vertex v.



There's at most one edge between any pair of vertices. Most test cases are small.
 
Output
For each test case, output the maximum number of edges Soda can add.
 
Sample Input
2
4 2
1 2
2 3
4 4
1 2
1 4
2 3
3 4
 
Sample Output
2
0
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  

pid=5315" target="_blank" style="color:rgb(26,92,200); text-decoration:none">5315 5314 5312 5311 5310 

 

大致题意:

有n个点。m条边的二分图(可能不连通)。问最多还能加多少条边变成全然二分图

思路:

显然每一连通块,都染成两种颜色,最后要尽量使两种颜色总数同样解才最优

显然有两种决策。不是染白就是染黑,01背包

dp[i][val]表示前i个连通块能染成同一色点数<=val的最大值

显然dp[scc][all/2]是最优解

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
typedef pair<ll,ll> pii; const int N = 10000+100;
const int M = 100000+1000;
struct Edge{
int v,nxt;
Edge(int v = 0,int nxt = 0):v(v),nxt(nxt){}
}es[M*2];
int n,m;
int ecnt;
int head[N];
inline void add_edge(int u,int v){
es[ecnt] = Edge(v,head[u]);
head[u] = ecnt++;
es[ecnt] = Edge(u,head[v]);
head[v] = ecnt++;
}
int col[N];
int cnt[N][2];
int top;
int sum = 0;
void dfs(int u,int fa){
col[u] = !col[fa];
cnt[top][col[u]]++;
for(int i = head[u];~i;i = es[i].nxt){
int v = es[i].v;
if(v == fa || col[v] != -1) continue;
dfs(v,u);
}
}
void ini(){
REP(i,n) head[i] = col[i] = -1,cnt[i][0] = cnt[i][1] = 0;
col[0] = top = sum = ecnt = 0;
}
int dp[2][N];
int main(){ int T;
cin>>T;
while(T--){
scanf("%d%d",&n,&m);
ini();
REP(i,m){
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v);
}
for(int i = n; i>= 1;i--){
if(col[i] != -1) continue;
top++;
dfs(i,0);
if(cnt[top][0] == 0 || cnt[top][1] == 0) {
cnt[top][0] = cnt[top][1] = 0;
top--;
}
else {
sum += cnt[top][0],sum += cnt[top][1];
}
} int nd = n-sum;
for(int i = 0;i <= sum/2;i++) dp[0][i] = 0;
REP(i,top){
for(int j = 0; j <= sum/2; j++){
dp[i&1][j] = -1;
if(j-cnt[i][0] >= 0 && dp[(i-1)&1][j-cnt[i][0]] != -1) dp[i&1][j] = dp[(i-1)&1][j-cnt[i][0]]+cnt[i][0];
if(j-cnt[i][1] >= 0 && dp[(i-1)&1][j-cnt[i][1]] != -1) {
dp[i&1][j] = max(dp[(i-1)&1][j-cnt[i][1]]+cnt[i][1],dp[i&1][j]);
}
}
int minn,maxx = sum-dp[top&1][sum/2];
int t = min(nd,maxx-dp[top&1][sum/2]);
minn = dp[top&1][sum/2]+t;
nd -= t;
if(nd) minn += nd/2, maxx += nd/2 + (nd&1);
printf("%d\n",minn*maxx-m);
}
}

HDU 5313 Bipartite Graph(二分图染色+01背包水过)的更多相关文章

  1. hdu 5313 Bipartite Graph(dfs染色 或者 并查集)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

  2. HDU 5313——Bipartite Graph——————【二分图+dp+bitset优化】

    Bipartite Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. HDU 5313 Bipartite Graph (二分图着色,dp)

    题意: Soda有一个n个点m条边的二分图, 他想要通过加边使得这张图变成一个边数最多的完全二分图. 于是他想要知道他最多能够新加多少条边. 注意重边是不允许的. 思路: 先将二分图着色,将每个连通分 ...

  4. HDU 5313 Bipartite Graph

    题意:给一个二分图,问想让二分图变成完全二分图最多能加多少条边. 解法:图染色+dp+bitset优化.设最终的完全二分图两部分点集为A和B,A中点个数为x,B中点个数为y,边数则为x × y,答案即 ...

  5. POJ 1112 Team Them Up! 二分图判定+01背包

    题目链接: http://poj.org/problem?id=1112 Team Them Up! Time Limit: 1000MSMemory Limit: 10000K 问题描述 Your ...

  6. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  7. HDU 2126 Buy the souvenirs (01背包,输出方案数)

    题意:给出t组数据 每组数据给出n和m,n代表商品个数,m代表你所拥有的钱,然后给出n个商品的价值 问你所能买到的最大件数,和对应的方案数.思路: 如果将物品的价格看做容量,将它的件数1看做价值的话, ...

  8. HDU 1203 I NEED A OFFER! 01背包

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 解题思路:简单的01背包,用dp[i]表示花费不超过i时的最大可能性 状态转移方程 dp[i]= ...

  9. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

随机推荐

  1. win7中如何恢复UltraEdit的默认配置

    自己win7上安装的UltraEdit 17.10.0.1015.由于编码格式不知道什么时候被改乱了,导致UE编写的java程序出现如下两种编译错误: D:\jcode>javac testco ...

  2. 网络流24题-最长k可重线段集问题

    最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...

  3. Activation(hdu 4089)

    题目:仙5的激活序列.有以下4种情况: 1.注册失败,但是不影响队列顺序 ,概率为p1 2.连接失败,队首的人排到队尾,概率为p2 3.注册成功,队首离开队列,概率为p3 4.服务器崩溃,激活停止,概 ...

  4. 矢量图和Word:EPS,PDF,EMF和SVG

    1.EMF和Word 在学校的时候,我思考过一个问题,论文中的插图如何保证清晰度.关键之一就是使用矢量图.参考知乎问题:如何在论文中画出漂亮的插图?.常见的矢量图包括:EPS,EMF和SVG.SVG适 ...

  5. Servlet 2.4 规范之第三篇:Servlet生命周期

        SRV.2.3    Servlet生命周期 servlet有着定义良好且明确的生命周期,它定义了servlet以怎样的方式加载和实例化.初始化.怎样处理客户端请求.以及怎样停止服务.生命周期 ...

  6. tcp异常断开的重连解决方法

    1.select超时重连 http://bbs.chinaunix.net/thread-4162149-1-1.html 2.http://bbs.csdn.net/topics/350074818 ...

  7. [bug]Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding

    写在前面 在mysql中这个异常是非常常见的,超时分为连接超时和执行超时,而连接超时,大部分原因是网络问题,或客户端到服务端的端口问题造成. bug场景 有的时候,使用MySqlDataReader在 ...

  8. Oracle SOA Suite OverView

    SOA是一场架构的变革,那既然是变革,那就一定是有内在的原因来推动这个架构的变革.在过去几十年的时间里面,应用程序架构已经经历了3次巨大的变革,从Terminal/主机--> Client/Se ...

  9. 临远的activiti教程

    1. 简介 协议 下载 源码 必要的软件 JDK 6+ Eclipse Indigo 和 Juno 报告问题 试验性功能 内部实现类 2. 开始学习 一分钟入门 安装Activiti 安装Activi ...

  10. 转: 多版本并发控制(MVCC)在分布式系统中的应用 (from coolshell)

    from:  http://coolshell.cn/articles/6790.html 问题 最近项目中遇到了一个分布式系统的并发控制问题.该问题可以抽象为:某分布式系统由一个数据中心D和若干业务 ...