Problem Description
Soda has a bipartite graph with n vertices
and m undirected
edges. Now he wants to make the graph become a complete bipartite graph with most edges by adding some extra edges. Soda needs you to tell him the maximum number of edges he can add.



Note: There must be at most one edge between any pair of vertices both in the new graph and old graph.
 
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤100),
indicating the number of test cases. For each test case:



The first line contains two integers n and m, (2≤n≤10000,0≤m≤100000).



Each of the next m lines
contains two integer u,v (1≤u,v≤n,v≠u) which
means there's an undirected edge between vertex u and
vertex v.



There's at most one edge between any pair of vertices. Most test cases are small.
 
Output
For each test case, output the maximum number of edges Soda can add.
 
Sample Input
2
4 2
1 2
2 3
4 4
1 2
1 4
2 3
3 4
 
Sample Output
2
0
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  

pid=5315" target="_blank" style="color:rgb(26,92,200); text-decoration:none">5315 5314 5312 5311 5310 

 

大致题意:

有n个点。m条边的二分图(可能不连通)。问最多还能加多少条边变成全然二分图

思路:

显然每一连通块,都染成两种颜色,最后要尽量使两种颜色总数同样解才最优

显然有两种决策。不是染白就是染黑,01背包

dp[i][val]表示前i个连通块能染成同一色点数<=val的最大值

显然dp[scc][all/2]是最优解

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
typedef pair<ll,ll> pii; const int N = 10000+100;
const int M = 100000+1000;
struct Edge{
int v,nxt;
Edge(int v = 0,int nxt = 0):v(v),nxt(nxt){}
}es[M*2];
int n,m;
int ecnt;
int head[N];
inline void add_edge(int u,int v){
es[ecnt] = Edge(v,head[u]);
head[u] = ecnt++;
es[ecnt] = Edge(u,head[v]);
head[v] = ecnt++;
}
int col[N];
int cnt[N][2];
int top;
int sum = 0;
void dfs(int u,int fa){
col[u] = !col[fa];
cnt[top][col[u]]++;
for(int i = head[u];~i;i = es[i].nxt){
int v = es[i].v;
if(v == fa || col[v] != -1) continue;
dfs(v,u);
}
}
void ini(){
REP(i,n) head[i] = col[i] = -1,cnt[i][0] = cnt[i][1] = 0;
col[0] = top = sum = ecnt = 0;
}
int dp[2][N];
int main(){ int T;
cin>>T;
while(T--){
scanf("%d%d",&n,&m);
ini();
REP(i,m){
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v);
}
for(int i = n; i>= 1;i--){
if(col[i] != -1) continue;
top++;
dfs(i,0);
if(cnt[top][0] == 0 || cnt[top][1] == 0) {
cnt[top][0] = cnt[top][1] = 0;
top--;
}
else {
sum += cnt[top][0],sum += cnt[top][1];
}
} int nd = n-sum;
for(int i = 0;i <= sum/2;i++) dp[0][i] = 0;
REP(i,top){
for(int j = 0; j <= sum/2; j++){
dp[i&1][j] = -1;
if(j-cnt[i][0] >= 0 && dp[(i-1)&1][j-cnt[i][0]] != -1) dp[i&1][j] = dp[(i-1)&1][j-cnt[i][0]]+cnt[i][0];
if(j-cnt[i][1] >= 0 && dp[(i-1)&1][j-cnt[i][1]] != -1) {
dp[i&1][j] = max(dp[(i-1)&1][j-cnt[i][1]]+cnt[i][1],dp[i&1][j]);
}
}
int minn,maxx = sum-dp[top&1][sum/2];
int t = min(nd,maxx-dp[top&1][sum/2]);
minn = dp[top&1][sum/2]+t;
nd -= t;
if(nd) minn += nd/2, maxx += nd/2 + (nd&1);
printf("%d\n",minn*maxx-m);
}
}

HDU 5313 Bipartite Graph(二分图染色+01背包水过)的更多相关文章

  1. hdu 5313 Bipartite Graph(dfs染色 或者 并查集)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

  2. HDU 5313——Bipartite Graph——————【二分图+dp+bitset优化】

    Bipartite Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. HDU 5313 Bipartite Graph (二分图着色,dp)

    题意: Soda有一个n个点m条边的二分图, 他想要通过加边使得这张图变成一个边数最多的完全二分图. 于是他想要知道他最多能够新加多少条边. 注意重边是不允许的. 思路: 先将二分图着色,将每个连通分 ...

  4. HDU 5313 Bipartite Graph

    题意:给一个二分图,问想让二分图变成完全二分图最多能加多少条边. 解法:图染色+dp+bitset优化.设最终的完全二分图两部分点集为A和B,A中点个数为x,B中点个数为y,边数则为x × y,答案即 ...

  5. POJ 1112 Team Them Up! 二分图判定+01背包

    题目链接: http://poj.org/problem?id=1112 Team Them Up! Time Limit: 1000MSMemory Limit: 10000K 问题描述 Your ...

  6. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  7. HDU 2126 Buy the souvenirs (01背包,输出方案数)

    题意:给出t组数据 每组数据给出n和m,n代表商品个数,m代表你所拥有的钱,然后给出n个商品的价值 问你所能买到的最大件数,和对应的方案数.思路: 如果将物品的价格看做容量,将它的件数1看做价值的话, ...

  8. HDU 1203 I NEED A OFFER! 01背包

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 解题思路:简单的01背包,用dp[i]表示花费不超过i时的最大可能性 状态转移方程 dp[i]= ...

  9. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

随机推荐

  1. 重置css样式

    如果有第三方插件或者想要覆盖css的样式的话,给他的样式设置auto就好了

  2. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. C语言标准库

    共15个,请查看,在linux下的目录位/usr/share/include assert.h ctype.h errno.h float.h limits.h locale.h math.h set ...

  4. NavBarControl(侧边导航栏)

  5. ubuntu和raspberry下调试python_spi备忘

    Ubuntu12.04 自安装python3.3中头文件Python.h路径:usr/local/python3.3/include/python3.3m Ubuntu12.04 自带的Python2 ...

  6. Leetcode总结之Union Find

    package UnionFind; import java.util.ArrayList; import java.util.LinkedList; import java.util.List; p ...

  7. 邁向IT專家成功之路的三十則鐵律 鐵律四:IT人快速成長之道-複製

    相信您一定看到過現今有許多各行各業的成功人士,他們最初都是從複製別人的成功經驗開始的,就算是一位知名的歌手,有許多都是在未成名以前,先行模仿知名歌手的唱腔.舞蹈.服裝等等開始的,然後在慢慢經過自我努力 ...

  8. PhantomJS 基础及示例 (转)

    概述 PhantomJS is a headless WebKit scriptable with a JavaScript API. It has fast and native support f ...

  9. c语言函数---I

    函数名: imagesize 功 能: 返回保存位图像所需的字节数 用 法: unsigned far imagesize(int left, int top, int right, int bott ...

  10. 直接返回list不封装的结果集

    直接返回list不封装的结果集,在Jsp访问方式: 1.封装成map访问 2.用jstl: <c:forEach var="images" items="${lis ...