Problem Description
Soda has a bipartite graph with n vertices
and m undirected
edges. Now he wants to make the graph become a complete bipartite graph with most edges by adding some extra edges. Soda needs you to tell him the maximum number of edges he can add.



Note: There must be at most one edge between any pair of vertices both in the new graph and old graph.
 
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤100),
indicating the number of test cases. For each test case:



The first line contains two integers n and m, (2≤n≤10000,0≤m≤100000).



Each of the next m lines
contains two integer u,v (1≤u,v≤n,v≠u) which
means there's an undirected edge between vertex u and
vertex v.



There's at most one edge between any pair of vertices. Most test cases are small.
 
Output
For each test case, output the maximum number of edges Soda can add.
 
Sample Input
2
4 2
1 2
2 3
4 4
1 2
1 4
2 3
3 4
 
Sample Output
2
0
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  

pid=5315" target="_blank" style="color:rgb(26,92,200); text-decoration:none">5315 5314 5312 5311 5310 

 

大致题意:

有n个点。m条边的二分图(可能不连通)。问最多还能加多少条边变成全然二分图

思路:

显然每一连通块,都染成两种颜色,最后要尽量使两种颜色总数同样解才最优

显然有两种决策。不是染白就是染黑,01背包

dp[i][val]表示前i个连通块能染成同一色点数<=val的最大值

显然dp[scc][all/2]是最优解

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
typedef pair<ll,ll> pii; const int N = 10000+100;
const int M = 100000+1000;
struct Edge{
int v,nxt;
Edge(int v = 0,int nxt = 0):v(v),nxt(nxt){}
}es[M*2];
int n,m;
int ecnt;
int head[N];
inline void add_edge(int u,int v){
es[ecnt] = Edge(v,head[u]);
head[u] = ecnt++;
es[ecnt] = Edge(u,head[v]);
head[v] = ecnt++;
}
int col[N];
int cnt[N][2];
int top;
int sum = 0;
void dfs(int u,int fa){
col[u] = !col[fa];
cnt[top][col[u]]++;
for(int i = head[u];~i;i = es[i].nxt){
int v = es[i].v;
if(v == fa || col[v] != -1) continue;
dfs(v,u);
}
}
void ini(){
REP(i,n) head[i] = col[i] = -1,cnt[i][0] = cnt[i][1] = 0;
col[0] = top = sum = ecnt = 0;
}
int dp[2][N];
int main(){ int T;
cin>>T;
while(T--){
scanf("%d%d",&n,&m);
ini();
REP(i,m){
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v);
}
for(int i = n; i>= 1;i--){
if(col[i] != -1) continue;
top++;
dfs(i,0);
if(cnt[top][0] == 0 || cnt[top][1] == 0) {
cnt[top][0] = cnt[top][1] = 0;
top--;
}
else {
sum += cnt[top][0],sum += cnt[top][1];
}
} int nd = n-sum;
for(int i = 0;i <= sum/2;i++) dp[0][i] = 0;
REP(i,top){
for(int j = 0; j <= sum/2; j++){
dp[i&1][j] = -1;
if(j-cnt[i][0] >= 0 && dp[(i-1)&1][j-cnt[i][0]] != -1) dp[i&1][j] = dp[(i-1)&1][j-cnt[i][0]]+cnt[i][0];
if(j-cnt[i][1] >= 0 && dp[(i-1)&1][j-cnt[i][1]] != -1) {
dp[i&1][j] = max(dp[(i-1)&1][j-cnt[i][1]]+cnt[i][1],dp[i&1][j]);
}
}
int minn,maxx = sum-dp[top&1][sum/2];
int t = min(nd,maxx-dp[top&1][sum/2]);
minn = dp[top&1][sum/2]+t;
nd -= t;
if(nd) minn += nd/2, maxx += nd/2 + (nd&1);
printf("%d\n",minn*maxx-m);
}
}

HDU 5313 Bipartite Graph(二分图染色+01背包水过)的更多相关文章

  1. hdu 5313 Bipartite Graph(dfs染色 或者 并查集)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

  2. HDU 5313——Bipartite Graph——————【二分图+dp+bitset优化】

    Bipartite Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. HDU 5313 Bipartite Graph (二分图着色,dp)

    题意: Soda有一个n个点m条边的二分图, 他想要通过加边使得这张图变成一个边数最多的完全二分图. 于是他想要知道他最多能够新加多少条边. 注意重边是不允许的. 思路: 先将二分图着色,将每个连通分 ...

  4. HDU 5313 Bipartite Graph

    题意:给一个二分图,问想让二分图变成完全二分图最多能加多少条边. 解法:图染色+dp+bitset优化.设最终的完全二分图两部分点集为A和B,A中点个数为x,B中点个数为y,边数则为x × y,答案即 ...

  5. POJ 1112 Team Them Up! 二分图判定+01背包

    题目链接: http://poj.org/problem?id=1112 Team Them Up! Time Limit: 1000MSMemory Limit: 10000K 问题描述 Your ...

  6. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  7. HDU 2126 Buy the souvenirs (01背包,输出方案数)

    题意:给出t组数据 每组数据给出n和m,n代表商品个数,m代表你所拥有的钱,然后给出n个商品的价值 问你所能买到的最大件数,和对应的方案数.思路: 如果将物品的价格看做容量,将它的件数1看做价值的话, ...

  8. HDU 1203 I NEED A OFFER! 01背包

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 解题思路:简单的01背包,用dp[i]表示花费不超过i时的最大可能性 状态转移方程 dp[i]= ...

  9. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

随机推荐

  1. Oracle Dual 表详解

    1.DUAL表的用途Dual 是 Oracle中的一个实际存在的表,任何用户均可读取,常用在没有目标表的Select语句块中--查看当前连接用户SQL> select user from dua ...

  2. 【Dll】Run-Time Check Failure #0 - The value of ESP was not properly saved across a function call

    [问题说明]调试动态库导出的函数时遇到的问题 [解决方法]要么加上__stdcall,对应__stdcall:要么去掉__stdcall,对应_cdecl

  3. TopCoder SRM596 DIV2 1000: SparseFactorialDiv2

    题意: For an integer n, let F(n) = (n - 0^2) * (n - 1^2) * (n - 2^2) * (n - 3^2) * ... * (n - k^2), wh ...

  4. AC日记——教辅的组成 洛谷 P1231

    题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书 ...

  5. 洛谷—— P1440 求m区间内的最小值

    https://www.luogu.org/problemnew/show/P1440 题目描述 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的 ...

  6. Xamarin.Forms的基本页面和基本视图

    Xamarin.Forms的基本页面和基本视图   在Xamarin.Forms中,每个App的界面都是一个页面Page.页面的种类有很多种.其中,最常见的页面就是内容页面ContentPage.项目 ...

  7. jvm 问题分析

    jmap dump:file=[文件名].dump [进程号]  生成dump root@VM-185-251-ubuntu:/opt/scripts# jmap -dump:file=three.d ...

  8. IntelliJ IDEA导入包的顺序调整和按包类型分类(保持和Eclipse一致)

    调整的内容如下: 空行 import java.* 空行 import javax.* 空行 import com.* 空行 import all other imports 空行 import st ...

  9. Unix domain socket

    转载:http://www.cnblogs.com/chekliang/p/3222950.html socket API原本是为网络通讯设计的,但后来在socket的框架上发展出一种IPC机制,就是 ...

  10. zip 压缩文件夹

    import java.io.*; import java.util.zip.*; /** * @author Dana·Li * <p> * 程序实现了ZIP压缩[compression ...