洛谷P3338 [ZJOI2014]力(FFT)
题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$$
令$x_i=\frac{1}{i^2}$,则有$$E_i=\sum_{j=1}^{i-1} q_j x_{i-j}-\sum_{j=i+1}^n q_j x_{j-i}$$
令$p_i=q_{n-i+1}$,则有$$E_i=\sum_{j=1}^{i-1} q_j x_{i-j}-\sum_{j=i+1}^n p_{n-j+1} x_{j-i}$$
那么不难发现这两个都是卷积(然而我连卷积是啥都不知道)
简单来讲,两个多项式的卷积$(f*g)(n)=\sum_{i=0}^nf(i)g(n-i)$,可以发现这个和多项式乘法的某一项系数的值的求法相同
然后只要用FFT求出两个卷积,然后做差就可以了
//minamoto
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=3e5+;const double Pi=acos(-);
struct complex{
double x,y;
complex(double xx=,double yy=){x=xx,y=yy;}
inline complex operator +(complex b){return complex(x+b.x,y+b.y);}
inline complex operator -(complex b){return complex(x-b.x,y-b.y);}
inline complex operator *(complex b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[N],B[N],C[N];
int n,m,l,r[N],limit=;
void FFT(complex *A,int type){
for(int i=;i<limit;++i)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int mid=;mid<limit;mid<<=){
complex Wn(cos(Pi/mid),type*sin(Pi/mid));
for(int R=mid<<,j=;j<limit;j+=R){
complex w(,);
for(int k=;k<mid;++k,w=w*Wn){
complex x=A[j+k],y=w*A[j+mid+k];
A[j+k]=x+y,A[j+mid+k]=x-y;
}
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
while(limit<=n*) limit<<=,++l;
for(int i=;i<=limit;++i) r[i]=(r[i>>]>>)|((i&)<<(l-));
for(int i=;i<=n;++i)
scanf("%lf",&A[i].x),B[n+-i].x=A[i].x,C[i].x=1.0/i/i;
FFT(A,),FFT(B,),FFT(C,);
for(int i=;i<=limit;++i) A[i]=A[i]*C[i],B[i]=B[i]*C[i];
FFT(A,-),FFT(B,-);
for(int i=;i<=limit;++i) A[i].x/=limit,B[i].x/=limit;
for(int i=;i<=n;++i)
printf("%.3lf\n",A[i].x-B[n-i+].x);
return ;
}
洛谷P3338 [ZJOI2014]力(FFT)的更多相关文章
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- 洛咕 P3338 [ZJOI2014]力
好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
- 【洛谷P3338】力
题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...
随机推荐
- LogStash 日志搜集
安装 下载:https://download.elastic.co/logstash/logstash/logstash-2.4.0.tar.gz 解压到指定目录即可 配置 bin目录添加logsta ...
- java手写单例模式
1 懒汉模式 public class Singleton { private Singleton singleton = null; private Singleton() { } public S ...
- 在c代码中获取用户环境变量
1 extern char ** environ 这是一个字符串数组,最后一个元素是null,即\0. 2 在代码中的使用方法 直接extern char **environ,然后 直接environ ...
- Sql Server 2016 创建内存数据库
官方教程:https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/survey-of-initial-area ...
- raise 与 raise ... from 的区别
起步 Python 的 raise 和 raise from 之间的区别是什么? try: print(1 / 0) except Exception as exc: raise RuntimeErr ...
- Codeforces Round #373 (Div. 2) C. Efim and Strange Grade —— 贪心 + 字符串处理
题目链接:http://codeforces.com/problemset/problem/719/C C. Efim and Strange Grade time limit per test 1 ...
- 侧方位停车想一次过,掌握边线30cm很重要!
侧方位停车要想一次过关,关键在于保持车身距离库边线30cm左右的距离.但是,往往有很多学员掌控不好这个距离,导致倒库时压线.那么,如何找准这个30cm呢?下面,小编就来教大家方法,赶紧学习吧! 侧方位 ...
- ubuntu下安装cpython 0.2x
Quick installation of cython: Step 1: Update system: sudo apt-get update Step 2: Install: cython Ate ...
- bzoj1799同类分布——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...
- android手机各大分区详解
1. bootloader 当我们拿到一款手机,第一件事应该就是按下电源键开机,那么从开机到进入到桌面程序这中间发生了些什么呢,我们从下面这张简化了的手机结构图开始: 注意:该结构图并不反映手机的实 ...