洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)
不知道线性基是什么东西的可以看看蒟蒻的总结
第一眼:这不会是个倍增LCA暴力合并线性基吧……
打了一发……A了?
所以这真的是个暴力倍增LCA合并线性基么……
ps:据某大佬说其实可以离线之后用点分做,那样的话因为每次只要合并两个线性基,复杂度可以减一个$log$
//minamoto
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
using namespace std;
inline ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while((ch=getc())>''||ch<'')
(ch=='-')&&(flag=true);
for(res=num;(ch=getc())<=''&&ch>='';res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(ll x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=;
int n,q,tot,head[N],Next[N<<],ver[N<<],dep[N];
ll fa[N][],b[N][][],sum,ans[],val[N];
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
inline void get(ll *b,ll x){
for(int i=;i>=;--i)
if(x>>i&){
if(!b[i]) return (void)(b[i]=x);
x^=b[i];
}
}
inline void merge(ll *b,ll *x){
for(int i=;i>=;--i)
if(x[i]) get(b,x[i]);
}
inline void init(int i){
for(int j=;j<;++j){
fa[i][j]=fa[fa[i][j-]][j-];
memcpy(b[i][j],b[i][j-],sizeof(b[i][j-]));
merge(b[i][j],b[fa[i][j-]][j-]);
}
}
void dfs(int u,int f){
fa[u][]=f,dep[u]=dep[f]+,init(u);
for(int i=head[u];i;i=Next[i])
if(ver[i]!=f) dfs(ver[i],u);
}
void LCA(int u,int v){
if(dep[u]<dep[v]) swap(u,v);
for(int i=;i>=;--i)
if(dep[fa[u][i]]>=dep[v])
merge(ans,b[u][i]),u=fa[u][i];
if(u==v) return (void)(merge(ans,b[u][]));
for(int i=;i>=;--i)
if(fa[u][i]!=fa[v][i]){
merge(ans,b[u][i]),merge(ans,b[v][i]);
u=fa[u][i],v=fa[v][i];
}
merge(ans,b[u][]),merge(ans,b[v][]),merge(ans,b[fa[u][]][]);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),q=read();
for(int i=;i<=n;++i)
get(b[i][],val[i]=read());
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add(u,v),add(v,u);
dfs(,);
while(q--){
memset(ans,,sizeof(ans));
int u=read(),v=read();
LCA(u,v);
sum=;
for(int i=;i>=;--i)
cmax(sum,sum^ans[i]);
print(sum);
}
Ot();
return ;
}
洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)的更多相关文章
- 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增
P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...
- [洛谷P3292] [SCOI2016]幸运数字
洛谷题目链接:[SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城 ...
- [BZOJ4568][Scoi2016]幸运数字 倍增+线性基
4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1791 Solved: 685[Submit][Statu ...
- 【BZOJ4568】[Scoi2016]幸运数字 倍增+线性基
[BZOJ4568][Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念 ...
- 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]
题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...
- BZOJ 4568: [Scoi2016]幸运数字(倍增+线性基)
传送门 解题思路 异或最大值肯定线性基了,树上两点那么就倍增搞一搞,就维护每个点到各级祖先的线性基,时间复杂度\(O(nlog^3n)\),并不知道咋过去的. 代码 #include<iostr ...
- [SCOI2016]幸运数字(线性基,倍增)
[SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作 ...
- 【BZOJ 4568】 4568: [Scoi2016]幸运数字 (线性基+树链剖分+线段树)
4568: [Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形 ...
- bzoj4568: [Scoi2016]幸运数字(LCA+线性基)
4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和 ...
随机推荐
- iOS开发 如何检查内存泄漏
本文转载至 http://mobile.51cto.com/iphone-423391.htm 在开发的时候内存泄漏是不可避免的,但是也是我们需要尽量减少的,因为内存泄漏可能会很大程度的影响程序的稳定 ...
- HDU 6076 Security Check DP递推优化
Security Check Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) ...
- 【BZOJ1043】[HAOI2008]下落的圆盘 几何
[BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. ...
- EasyRTMP实现RTMP异步直播推送之环形缓冲区设计
本文转自EasyDarwin团队kim的博客:http://blog.csdn.net/jinlong0603 EasyRTMP的推送缓冲区设计 EasyRTMP内部也同样采用的环形缓冲的设计方法,将 ...
- 九度OJ 1128:求平均年龄 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2080 解决:1084 题目描述: 班上有学生若干名,给出每名学生的年龄(整数),求班上所有学生的平均年龄,保留到小数点后两位. 输入: 第 ...
- UI标签库专题四:JEECG智能开发平台 Upload(上传标签)
1. Upload(上传标签) 1.1. 參数 属性名 类型 描写叙述 是否必须 默认值 id string 上传控件唯一标示 是 null name string 控件name 是 null ...
- Impala 安装笔记2一hive和mysql安装
l 安装hive,hive-metastore hive-server $ sudo yum install hive hive-metastore hive-server l 安装mysql ...
- Linux ARM交叉编译工具链制作过程【转】
本文转载自:http://www.cnblogs.com/Charles-Zhang-Blog/archive/2013/02/21/2920999.html 一.下载源文件 源代码文件及其版本与下载 ...
- Android studio在ubuntu下安装【转】
本文转载自:http://www.jianshu.com/p/776e3b52e930 这学期的Android课程要学Android比较底层的东西,所以老师要求在Linux下安装Android的开发环 ...
- 有待总结的KMP算法 sdut oj 2463 学密码学一定得学程序
学密码学一定得学程序 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 曾经,ZYJ同学非常喜欢密码 学.有一天,他发现了一个很长很 ...